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Abstract

Mobile intelligent networks can play a key role in many different areas from emergency
response, surveillance and security, and battlefield operations to smart homes and factories
and environmental monitoring. Accurate mapping of the obstacles/objectsin the environ-
ment is key to the robust operation of unmanned autonomous networks asit is an integral
part of navigation and path planning. In the robotics community, the problem of mapping
has been widely explored. However, in the existing mapping approaches, only areas that
can be directly sensed by the sensors are mapped. In several scenarios, it may be necessary
to have see-through capabilities and map occluded objects without direct sensing. For in-
stance, the robots may need to build an understanding of the objects inside aroom before
entering it. Having see-through capabilities can also reduce the overall mapping time and

energy in any networked robotic operation.

In this dissertation, we consider a mobile robotic network that is tasked with building

a map of the objects/obstacles in an environment including the occluded ones. Since we

Vi
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are interested in see-through capabilities, in our framework the robots cooperate to build
the map based on a small number of wireless channel measurements. This allows the
robots to efficiently map occluded areas of the workspace. By using the recent results in
the area of compressive sensing, we exploit the sparse representation of the map in space,
wavelet or spatial variations, in order to build it with minimal sensing. We discuss three
mapping strategies based on frequency sampling, coordinated space and random space
measurements and show the underlying tradeoffs of the possible sampling, sparsity and
reconstruction techniques. For instance, we shed light on the optimum number of angular
motion directions of the robots, as well as the choice of the angles, to distribute a given
number of wireless measurements. We establish that the total number of available channel
measurements should be distributed over a small number of angles, that is bigger than
or equal to the number of jump (discontinuity) angles of the structure, with a preference

given to the angles of jJumps.

We then propose an integration of our wireless-based mapping framework with exist-
ing mapping techniques in order to map more complicated structures. More specifically,
we propose an integrated framework where laser measurements are used to map the vis-
ible parts of the environment (the parts that can be sensed directly by the laser scanners)
using occupancy grid mapping approaches. The parts that can not properly be mapped
are then identified and mapped based on wireless channel measurements. We show how
to integrate occupancy grid mapping with two reconstruction methods based on wireless
measurements and compressive sensing: Bayesian compressive sensing (BCS) and total
variation (TV) minimization. We compare the performance of these two integrated ap-
proaches and shed light on the underlying tradeoffs. Finally, we propose an adaptive path
planning strategy that utilizes the current estimate of uncertainty to collect wireless mea-
surements that are more informative for obstacle mapping. Overall, our integrated frame-
work enables mapping occluded structures that can not be mapped with laser scanner data

alone or a small number of wireless measurements.

Vii
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Most importantly, we show how to design an experimental robotic platform in order to
implement our approach. We then show the performance of our framework in efficiently
mapping a number of real obstacles including blocked ones. Our experimental results

confirm the feasibility of the proposed framework for mapping structures that include oc-
cluded parts.

viii

www.manharaa.com




Contents

List of Figures Xiii
1 Introduction 1
11 PriorWork. . . . . . e 3
1.11 Obstacle Mappingin RoboticsLiterature . . . . . ... ... .. 3

1.1.2 Through-the-wall Radar for Detection . . . . . . ... ... ... 4

113 Wireless-based ObstacleMapping . . . . . . . ... ... .... 5

1.2 Contributionsof thisDissertation . . . . . . ... ... ... ....... 5
1.3 DissertationOverview . . . . . . . . . e 7

2 Wireless Channedl Modeling and Experimental Validation 8

2.1 An Experimental Robotic Platform for Channel Measurement Collection. 10

211 HardwareArchitecture . . . . . . ... ... 11

21.2 SoftwareArchitecture . . . .. ... ... ... .. ... 13

2.2 Characterization of the Spatial Variations of aWirelessChannel [1,2] .. 14
IX

www.manaraa.com



Contents

221 Smal-Scale Fading (Multipath Fading) . . . . . ... ... ... 16

222 Shadow Fading (Shadowing) . . . . .. ... .. ... ...... 19
2.2.3 Distance-dependent PathLoss . . . .. ... .. ... ...... 21
224 Channel Spatia Correlation . . . . . ... ... ... ...... 22

2.3 Impactof AntennaAngle . . . . . . ... 24
24 SUMMAY . . . e e e e e e 26
3 Wireless-Based Compressive Cooper ative Obstacle M apping 28
3.1 AnOverview of Compressive Sampling Theory [3-5] . . . . .. ... .. 29
3.1.1 Reconstruction Approaches . . .. ... ... .......... 32

3.2 Compressive Wireless-based Obstacle Mapping[6-8] . . . . . .. .. .. 35
3.3 Different possibilitiesfor compressive sampling and reconstruction. . . . 38

3.3.1 Fregquency Sampling using Coordinated Wireless

Measurements . . . . . . . . . . ... 39

3.3.2 Coordinated Wireless Measurements and Space Sampling . . . . 43

3.3.3 Random Wireless Measurements and Space Sampling . . . . . . 45

34 SUMMAY . . . . e 45

4 Tradeoffs of Wireless-Based Obstacle M apping 47

4.1 Underlying Tradeoffs of different sampling and reconstruction techniques 48

4.2 Cooperative Mapping of Real Obstacles using
our Proposed Framework . . . . . . . . . . ... ... 54

www.manaraa.com



Contents

4.3 Coordinated or Random Wireless Measurements? . . . . . . . . . .. .. 60

4.3.1 Comparison of the Mapping and See-Through Capabilities of the

Coordinated and Random Cases - An Experimental Test . . . . . 68

44 SUMMATY . . . oot e e e e e e e 73

5 Integrated Wireless and Grid-Based Obstacle M apping Framewor k 75
51 Systemmoded . . ... ... 77
511 Laser MeasurementModel . . . . ... ... L 78

512 Wireless Channel Measurement Model . . . . . ... ... ... 79

5.2 A Brief Overview of Occupancy Grid Mapping using Laser Measurements 81
521 MappingwithKnownPoses . . . ... ... ... ........ 82
5.2.2 Mapping with Unknown Posesusing SLAM . . . . . ... ... 83

5.3 Integration of Occupancy Grid Mapping and
Bayesian Compressive Sensing (BCS) for Mapping
with See-Through Capabilities . . . . . . . ... ... ... ... .... 85

5.3.1 Estimation of the Hyperparameters . . . . . . ... ... .. .. 88

5.4 Integration of Occupancy Grid Mapping and Total Variation (TV) Mini-
mization for Mapping with See-Through Capabilities . . . . . . ... .. 90

5.5 Coordinated vs. Random Wireless Channel Measurements . . . . . . . . 93
5.6 An Adaptive Data Collection Strategy for Integrated Obstacle Mapping . 99

57 Experimental Results . . . .. ... ... ... ... ... . ... ..., 104

Xi

www.manaraa.com



Contents

5.7.1 Summary of the Experimental Setup to Enable our Proposed Inte-
grated Approach . . . . . . . ... 104

5.7.2 Experimental Results for Mapping a Structure with Occluded Parts 107

58 Summary . . ... 111
6 Conclusion and Future Extensions 115
References 118

Xii

www.manharaa.com




List of Figures

2.1  Sample channel measurementsin (left) 1D and (right) 2D. . . . . . . .. 9

2.2  (left) Pioneer 3-AT robot equipped with a servo mechanism and a direc-

tional antenna. (right) Pioneer 3-AT robot equipped with an omnidirec-

tional antenna. . . . . ... 12
2.3 A block diagram of the hardware architecture of one of therobots. . . . 12
2.4  Theoverdl software architecture of therobotic platform. . . . . . . .. 14

25  (right) Blueprint of the basement of our building, where channel mea-
surements are collected — a colormap of the measured received signal
power is superimposed on the map for the transmitter at location#1 (see

the pdf file for acolor version). (left) A magnified inset of the blueprint. 15

2.6 Underlying dynamics of the received signal Power across route 1 of Fig.
2.5 and for the transmitter at location#1. The blue curve is the measured
received power which exhibits small-scale fading. By averaging locally
over small-scale variations, the underlying shadowing variations can be
seen (gray). The average of the shadowing variations then follows the
distance-dependent path losscurve (dashed ling). . . . . . ... ... .. 16

Xiii

www.manaraa.com



List of Figures

2.7  The distribution of small-scale fading using three different parts of our
gathered measurements. Nakagami distribution showsavery good match

— (top figures) pdf and (bottom figures) cdf. . . . . . . ... ... .. .. 19

2.8  Comparison of Nakagami and lognormal for the distribution of small-
scalefading — (left) pdf and (right)cdf. . . . . . .. ... ... ..... 19

2.9 lllustration of moving average over small-scale variations in order to
obtain shadowing dynamics. An appropriate window length is chosen
such that the small-scal e variations can be considered stationary over that
length. Then, the value of shadowing at the center of this window corre-
sponds to the average of al the data points within the window. Alterna-

tively, thewindow size can beadaptive. . . . . . ... ... ... ... 20

2.10 (top figures) pdf and (bottom figures) cdf of the log of shadow fading
(after removing the distance-dependent path loss) and the normal distri-
bution match for all the data gathered in the basement of our building.

The three columns show the impact of the averaging window size on the
match: (left column) window size of 0.4\, (center column) window size
of 1.0\ and (right column) window size of 10.0\, with A = 0.125 m
denoting the wavelength of the transmittedsignal. . . . . . . ... ... 22

2.11 Exponential match for the normalized autocovariance of the log of shad-

owing variations. It can be seen that exponential providesagood match. 24

2.12 (left) Pioneer robots gathering data at the basement of our building with
the transmitter using an omnidirectional antenna and the receiver using a
directional one. (right) Pioneer robots using directional antennasfor both

transmissionandreception. . . . . . ... ... L .. 26

Xiv

www.manaraa.com



List of Figures

2.13

31

3.2

4.1

4.2

4.3

Impact of antenna angle in reducing small-scale fading. It can be seen
that using an adaptive antenna with a small beamwidth can reduce the
amount of multipath fading considerably and also increase the overall

received signal pPOWer. . . . . . . ... 26

An indoor obstacle map with the obstacles marked in white and the illus-
tration of the proposed compressive cooperative mapping using coordi-

nated (left) and random (right) wirelessmeasurements. . . . . . . . .. 35

Elements of our proposed framework for compressive cooperative obsta-

clemapping. . . . . . .. e 39

A T-shaped obstacle map with the obstacle areas denoted in white, where
100% of the energy isin 7.52% of the space samples (left), its trans-
formed representation in wavelet domain, where 100% of energy isin

lessthan 1.82% of the coefficients (center), and its spatial variations (right). 49

Performance of different reconstruction techniques using the proposed
Fourier sampling and space sparsity approach. As can be seen SPARSA
outperforms the MP approaches considerably. It aso has a much less
computational complexity as compared to OMP and a comparable com-
plexity toROMP. . . . . . . . . . e 51

Performance of different reconstruction techniques using the proposed
Fourier sampling approach. The figure compares the performance of re-
construction based on the sparsity in space, wavelet and total variation.
As can be seen, using the sparsity in the spatial variations provides the
best performance for most part. Thisis then followed by using the spar-

gty inthewaveletedomain. . . . ... ... ... .. ... . ..., 52

XV

www.manaraa.com



List of Figures

4.4

4.5

4.6

4.7

4.8

4.9

4.10

The reconstructed obstacle map for the case of frequency sampling when
only 9.09% of the Fourier function is sampled. The figure compares the

performance of different sparsity/reconstructiontechniques. . . . . . . . 53

A comparison of different proposed sampling techniques. All the recon-
structionsarewith TVAL. . . . . . ... ... o 54

(left) Two pioneer 3-AT robots equipped with our servo control mecha-
nism/fixture and an adaptive narrow-beam directional antennain action,

making wireless measurementsin order to map theobstacle. . . . . . . . 55

The figures show a T-shaped column, a circular column and a blocked
column. A horizontal cut of these structures are also shown. Our robots

aim to reconstruct the horizontal cut, using our proposed framework. . . 57

Performance of our proposed framework in mapping threereal structures.
The three structures and their horizontal cuts are shown in Fig. 4.7. As
can be seen, the original structures and their details can clearly be seen

in our reconstruction although very few wireless measurements were taken. 59

Mapping quality after a threshold of 10dB is applied to three of the re-
constructed maps of figure 4.8. The threshold is applied such that any
value that is 10dB below the maximumiszeroed. . . . . ... ... .. 60

Performance of the proposed frequency sampling approach. As can be
seen, the reconstruction quality is very similar to that of Fig. 4.8, where

coordinated measurements and space samplingwereused. . . . . . . .. 61

XVi

www.manaraa.com



List of Figures

411 Comparison of our mapping framework in the reconstruction of the T-
shaped structure of Fig. 4.14 at an extremely small (top row) and small
(bottom row) sampling rates in the reconstruction of a T-shaped obsta-
cle, with (left column) random sampling and (right column) coordinated

Samples. . . . 62

4.12 Comparison of coordinated and random space sampling approaches in
mapping a real obstacle at extremely low sampling rates. Both attempt
to build the T-shape structure of Fig. 4.7 with only 0.77% measurements

(only one angle for the coordinatedcase). . . . . .. ... ... ..... 63

4.13 (left) An obstacle map with discontinuities occurring at seven angles,
(middle-left) reconstruction with no measurements along the jump an-
gles, (middle-right) reconstruction with some measurements along the
jump angles and (right) reconstruction with al the measurements along

thejumpangles. . . . . . . . .. .. 65

4.14 Obstacle maps corresponding to (left) a section of the basement of our
building, (center) a blocked diamond-shaped column and (right) a T-
shapedcolumn. . . . . . . . . .. 67

4.15 Error curves for the reconstruction quality of the obstacle maps of Fig.
4.14, using our coordinated approach. Asthe number of anglesincreases,

therandomnessof mappingincreases. . . . .. ... . ... ... ... 68

4.16 (left) An obstacle structure, (center) its horizontal cut and (right) illustra-
tion of the physical constraints that limit the positioning of the robots for
the constrained case. Our robots aim to reconstruct the structure, based

on only making afew wirelesstransmissionsfromoutside. . . . . . .. 69

XVii

www.manaraa.com



List of Figures

4.17 Comparison of the mapping and see-through capabilities of the coordi-
nated and random approaches in mapping the structure of Fig. 4.16, us-
ing our experimental robotic platform. The top and bottom rows show
the performance for the two cases of 0.76% and 1.83% sampling ratesre-
spectively. The three columns show the mapping quality for the cases of
coordinated (along four angles), random unconstrained and random con-
strained measurements from left to right. It can be seen that the mapping

performance improves considerably fromrighttoleft. . . . .. ... .. 70

4.18 Reconstruction of the structure of Fig. 4.16, with (left) coordinated sam-
pling with 1.83% measurements along four angles and (right) random
unconstrained sampling with 6.98% measurements. Both reconstructions
result in the same Mean Squared Error (MSE). . . . . . ... ... ... 71

4.19 Error curves for the reconstruction quality of the obstacle map of Fig.
4.16, using our coordinated approach along four angles and our random
approaches. Even at very low sampling rates, the coordinated approach

outperformstherandomones. . . . . . . . ... ... ... .. ..... 71

4.20 Reconstruction of the structure of Fig. 4.16 with 0.76% measurements,
with (left) coordinated sampling along the jump angles of the outer walls
(0° and 90°), (center) coordinated sampling along 45° and 135° and
(right) random unconstrained sampling. It can be seen that random sam-
pling can be more informative than coordinated if the structure is not

sampled aong the jump anglesinthecoordinatedcase. . . . .. .. .. 72
5.1 Schematic of the proposed integrated mapping scenario using laser and
wirelesschannel measurements. . . . . . . ... ... 77

5.2  Thedistribution of the noise (wgg) of EQ. 5.2 from our experimental data
and the corresponding best Gaussian fit (i = 0.22 and 69 = 10.25). .. 81

Xviii

www.manaraa.com



List of Figures

53 An illustration of wireless-based obstacle mapping with (left) coordi-

nated wireless measurements and (right) random wireless measurements. 94

54  An obstacle map with the obstacle areas denoted inwhite. . . . . . . .. 95

5.5  Thereconstruction of the obstacle of Fig. 5.4 using 10% noiseless simu-

lated measurements. . . . . . . . . . . 96

5.6  Thereconstruction of the obstacle of Fig. 5.4 using 15% noiseless simu-

lated measurements. . . . . . . . . . e 97

5.7 NMSE versus the percentage of wireless measurements in the noiseless

case for thereconstruction of the obstacleof Fig. 54. . . . . ... ... 97

5.8  Thereconstruction of the obstacle of Fig. 5.4 using 15% noisy simulated

wirelessmeasurements (oo = 0.1). . . . . .. ... 98

5.9 Thereconstruction of the obstacle of Fig. 5.4 using 15% noisy simulated

wirelessmeasurements (oo = 0.2). . . . . . ... oL 99

5.10 NMSE versus o, for the reconstruction of the obstacle of Fig. 5.4 with

15% simulated wirelessmeasurements. . . . . . . . . ... ... .. 100

5.11 Initial reconstruction of the obstacle of Fig. 5.4 based on 3% noiseless

simulated wirelessmeasurements. . . . . . . . . . . ... ... 104

5.12 The reconstruction of the obstacle of Fig. 5.4 after 15% additional adap-

tivewirelessmeasurementsarecollected. . . . . . . . ... ... ... 105

5.13 MSE asafunction of the percentage of the additional wireless measure-
mentsfor our adaptive path planning strategy, in reconstructing the whole

map of Fig. 5.4 (3% initial random measurementswereused) . . . . . . 106

XiX

www.manaraa.com



List of Figures

5.14 (left) A Pioneer P3-AT robot equipped with our servo control mech-
anism /fixture, adaptive narrow-beam directional antenna and Hokuyo
laser scanner; (right) two robots using laser scanners and wireless mea-

surements in order to map an obstacle structure that includes occluded

5.15 (left) The obstacle structure of interest and (right) its horizontal cut. The
paths where the robots can make random wireless measurements are
marked with dashed linesintheright figure. . . . . .. ... ... ... 109

5.16 (@) Horizontal cut of the obstacle map of Fig. 5.15, (b) occupancy grid
mapping with laser scanners, reconstruction usingwireless measure-
ments with (c) BCS and (d) TV minimization, our proposed integrated
framework with () BCS and (f) TV minimization. The percentage of
wireless measurements is 18% of the unknown part, which corresponds
to6%of theoverallmap. . . .. ... ... ... ... ... ... ... 110

5.17 The reconstruction of the obstacle of Fig. 5.15 using laser scanner data
and 193 wireless measurements (corresponding to 2.7% of the unknown
part or 0.8% of the overall map). Ascan be seen, the number of collected

wireless measurementsis too small to detect the occluded parts. . . . . 111

5.18 Variance of the reconstruction of Fig. 5.17 for the integrated BCS-based
Strategy. . . . e 112

5.19 Improvement to the reconstruction of Fig. 5.17 based on an additional
7.03% (of the unknown part) wireless measurements that are collected

using our adaptive strategiesof Section56. . . . ... ... ... ... 113
5.20 Variance of the reconstruction of Fig. 5.19 for the integrated BCS adap-

tivevariance-based strategy. . . . . . . . ..o 114

XX

www.manaraa.com



List of Figures

5.21 MSE versus number of additional wireless measurements for the pro-
posed adaptive motion planning strategies of Section 5.6. Initial wireless
measurements corresponding to 2.7 % of the unknown part or 0.8% of

thewholemapareused. . ... ... ... ... ... ... .. .. 114

XXi

www.manharaa.com




Chapter 1

| ntroduction

Over the past few years, considerable progress has been made in the area of mobile sen-
sor and robotic networks [9-18]. Mobile robotic networks can play a key role in areas
such as emergency response, surveillance and security, and battlefield operations. In order
for a such a network to be autonomous and robust, accurate mapping of obstacles/objects
is needed. The obstacle/object map can be a 2D (or 3D) grid map of the environment,
where we have zeros at |ocations where there is no obstacle and non-zero values at obsta-
cle locations. In several scenarios, it may be necessary to have see-through capabilities
and map the objects without direct sensing. For instance, the robots may need to build an
understanding of the objects inside a room, before entering it. See-through mapping fur-
thermore allows the robots to map the obstacles for navigation purposes, without having
to sense them directly. Thiscan be of particular interest in several scenarios such as search
and rescue, surveillance or threat detection. It also saves the overall obstacle mapping
time and energy in any cooperative robotic application, by eliminating the need for direct

sensing of all the objects.

In this dissertation, we consider cooperative mapping of obstacles (including occluded

ones) in robotic networks based on a small number of wireless transmissions. In the wire-
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Chapter 1. Introduction

less communication literature, it is well-established that the shadowing component of a
wireless transmission contains implicit information on the objects located on the path be-
tween the transmitter and receiver [1]. Thus, wireless measurements between pairs of
robots can possibly be utilized for obstacle mapping, with the advantage that it can al-
low the robots to map the areas that are not directly sensed (mapping of occluded parts).
This has opened a new and different venue for the mapping of obstacles as shown by

Mostofi [6-8] and is the approach we shall pursue in thisthesis.

In general, extracting the obstacle information, without making a prohibitive number of
wireless transmissions, is considerably challenging due to al the propagation phenomena.
In order to address this and enable the mapping based on a small number of wireless
transmissions, we utilize the new theories of compressive sensing [3,4]. The Nyquist-
Shannon sampling theorem [19] revolutionized several different fields by showing that,
under certain conditions, it is indeed possible to reconstruct a uniformly sampled signal
perfectly. The new theory of compressive sensing (also known by other terms such as
compressed sampling, compressive sensing or sparse sensing) shows that under certain
conditions, it is possible to reconstruct a signal from a considerably incomplete set of
observations, i.e. with anumber of measurements much less than predicted by the Nyquist-
Shannon theorem [3,4]. This opens new and fundamentally different possibilitiesin terms
of information gathering and processing in mobile networks, as we shall utilize in this

thesis.

We next summarize the related work in the literature and continue with a summary of

our contributions.
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Chapter 1. Introduction

1.1 Prior Work

1.1.1 Obstacle Mappingin RoboticsLiterature

In the robotics community, the problem of mapping has been widely explored [20-23].
However, in the current approaches using sonar/laser sensors, only areas that are directly
sensed by the sensors are mapped. Depending on whether the positions and orientations
of the robots are known, the mapping problem can be tackled using different techniques.
In mapping with known poses, occupancy grid mapping approaches [23, 24] have been
proposed. The objective there is to build a grid map of the obstacles by sequentially
updating the posterior of having an obstacle in each cell of agrid, based sensory (sonar or

laser) measurements.

In mapping with unknown poses, the Simultaneous L ocalization and Mapping (SLAM)
approaches are used to incrementally build a map of the environment, while estimating
the location of the robot within the map [25-30]. The SLAM problem is among the most
challenging problemsin autonomousrobotics. Several techniquesbased on using extended
Kaman filters (EKF) [31] and Rao-Blackwell particle filters [32—35] have been proposed
by the researchers to solve this problem. Both occupancy grid maps and landmark maps
(aset of known landmarksin the environment) can be considered in SLAM, depending on
the algorithm used and type of the environment [25]. Approaches based on generating an
occupancy map address reducing the uncertainty of direct sensing [36, 37]. One common
limitation of all these approaches is that only areas that can be directly sensed by the

Sensors are mapped.

Another set of approaches are based on the Next Best View (NBV) problem [38—42].
In NBV approaches, the aim is to move to the positions “good” for sensing by guiding
the vehicles to the perceived next safest area (area with the most visibility) based on the
current map [38]. However, similar to the approaches above, areas that are not sensed

directly are not mapped in NVB.
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Chapter 1. Introduction

1.1.2 Through-the-wall Radar for Detection

Though-the wall radar (TWR) is mostly focused on the detection of a single occluded
object, for instance a person or a weapon which is occluded by walls. The most com-
mon approaches for TWR are multilateration [43-45], and synthetic aperture radar (SAR)
[46,47]. In multilateration, range measurements from multiple sensors are correlated to
specific points in the image. Spatial diversity is used to have a large set of Transmit-
ter/Receiver combinations. SAR is an extension to the multilateration concept where a
complex matched filter isused. A key tool for successful TWR isthe use of diversity [48].
Possible ways of attaining diversity include: frequency, sensor position, angle, waveform
choice, and multiple-input multiple-output (MIMO). A popular approach for TWR is the

use of amodel-based reconstructionin which apriori structureinformationisutilized [48].

Ultra-wideband (UWB) has also been shown to yield good detection properties for
TWR. For instance, in [49] the authors use an UWB MIMO phased array radar system to
perform real-time detection of (possibly occluded) moving objects. To detect movement,
the radar system subtracts previously-acquired raw data sets from real-time readings and
then displays the image of the difference. In other words, this approach requires coherent
change detection, i.e. previous measurements of the scene of interest without the target, so
the changes can be detected. Furthermore, the approach is focused on detection of single
targets, not on mapping the layout of an environment. In [50], ahandheld deviceisused to
detect motion of individuals. However, it similarly requires prior knowledge of building
models to develop a ground truth to compare the predicted and the real measurements.
Along the same line, in [51], authors use a transmitter that is buried underground and

several fixed receivers on the surface to detect underground tunnels/facilities using radar.

In summary, a common characteristic of TWR is that it either requires a priori mea-
surements when the target is not present or some knowledge on the dielectric properties of

thefirst layer of occluders (or transparent first layer).
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1.1.3 Wireless-based Obstacle M apping

In [6-8], Mostofi proposed aframework for see-through mapping based on using very few
wireless channel measurements and by exploiting the sparse representation of the map in
another domain such as wavelet or spatial variations. In thisthesis, we follow this line of
work. On arelated topic, there are also a number of concurrent recent papers on detecting
an object using fixed sensors. In [52,53], for instance, the authors build a network of 28
fixed sensors in order to detect presence of a person. The framework is based on making
wireless measurements between pairs of sensors. Then the goal isto roughly track aperson
as opposed to building a map of obstacles. Thereisaneed for prior learning in the area of
interest aswell. As such, [52,53] is more on detecting an obstruction to a wireless signal

as opposed to obstacle mapping with minimal measurements.

We next summarize the contributions of thisthess.

1.2 Contributionsof this Dissertation

This dissertation is on the development of a framework for building obstacle maps with
see-through capabilities. We discuss three mapping strategies based on frequency sam-
pling, coordinated space and random space measurements. Then, we use compressive
sensing in order to exploit the sparse representation of the map in space, wavelet or spatial
variations, so that the map can be built with a small number of wireless measurements.
We furthermore show the underlying tradeoffs of the possible sampling, sparsity and re-
construction techniques using both simulation and experimental results. We thoroughly
compare the performance of our random and coordinated sampling strategies. Along this
line, we discuss the optimum number of angular motion directions of the robots, as well
as the choice of the angles, in order to distribute a given number of wireless measure-

ments. We establish that the total number of available channel measurements should be
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distributed along a small number of angles, that is bigger than or equal to the number of

jump angles of the structure, with a preference given to the angles of jumps.

We then propose a novel integrated occupancy grid and wireless-based mapping ap-
proach for mapping with see-through capabilities. Our proposed approach uses occupancy
grid mapping (with known poses or with unknown poses using SLAM) to map the parts of
the environment that can be sensed directly by the laser scanners of the robots. The parts of
the map that can not be seen by the laser scanners are then mapped based on the wireless
channel measurements and by using our proposed wireless-based mapping framework.
We rigorously show how to integrate occupancy grid mapping with two different wireless-
based compressive map reconstruction methods. our previous TV-based approach and a
probabilistic Bayesian Compressive Sensing-based approach. More specifically, we pro-
pose an integrated probabilistic approach based on utilizing Bayesian Compressive Sens-
ing (BCS) for extracting the map of the occluded parts from wireless measurements. We
then compare the performance of our BCS-based integrated framework with that of our
TV-based integration and shed light on the underlying tradeoffs. For instance, our results
indicate that the integrated BCS-based method is more appropriate for mapping based on
random wireless measurements while TV-based integrated approach performs better with

coordinated wirel ess measurements.

Another contribution of thisthesisis to propose adaptive sample collection strategies
that can enable pairs of robots to efficiently choose the positions from which to take
the next wireless measurements such that the mapping performance is improved. More
specifically, we propose two strategies: ad-hoc and variance-based. The variance-based
approach, for instance, utilizes the current estimated variance of our integrated BCS ap-
proach to identify the map cellswith highest uncertainty and plans the motion of the robots

to cover those cells next.

Finally, we also show how to design an experimental robotic platform in order to im-

plement the proposed mapping approaches. We then show the performance of our frame-

www.manaraa.com



Chapter 1. Introduction

work in efficiently mapping anumber of real obstacles (including blocked ones) using our
robotic testbed. We discuss hardware requirements, such as the use of directional adaptive
antennas, in order to mitigate the effects of multipath fading. Our experimental results
demonstrate the feasibility and good performance of the proposed framework for mapping
real structures that have occluded parts.

1.3 Dissertation Overview

This dissertation is organized as follows: Chapter 2 serves as an overview of the char-
acterization of the underlying multi-scale dynamics of a wireless link, the knowledge of
which would be useful for the subsequent chapters. We further describe our experimen-
tal setup for automating the channel measurement process, using our robots. In Chapter
3 we give a brief summary of the area of compressive sampling, as relevant to our pro-
posed framework and explain our wireless-based mapping approach. In Chapter 4, we
discuss different possibilities for compressive sampling and reconstruction and show their
underlying tradeoffs. We furthermore show how to properly design a robotic platform to
implement our proposed mapping framework. In that chapter, we then validate our re-
sults through simulations and experimental data gathered with our robots. In Chapter 5,
we propose an integrated framework for mapping with see-through capabilities using both
laser and wireless channel measurements. In thisframework, laser measurements are used
to map the visible parts of the environment while the rest of the map (e.g. the occluded
parts) are then mapped based on our wirel ess-based mapping framework. \We also propose
an adaptive exploration strategy which enables a pair of robots to efficiently collect wire-
less measurements that are more informative for see-through mapping. We conclude in
Chapter 6.
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Chapter 2

Wireless Channel Modeling and

Experimental Validation

This chapter serves as an overview of the characterization of the underlying multi-scale
dynamics of awirelesslink. By utilizing the knowledge available in the wireless commu-
nication literature, we summarize a probabilistic framework for the characterization of the
three dynamics of awireless channel. We furthermore describe our experimental setup for
automating the channel measurement process, using our robots. In this chapter, we use
this experimental setup to confirm the probabilistic channel characterization framework,
by making an extensive number of channel measurements. The three wireless channel
dynamics are then used in the next chapters as the basis for the sensing model of our

wireless-based compressive mapping framework.

In arealistic communication settings, such as an urban area or an indoor environment,
Line-Of-Sight (LOS) communication between a wireless transmitter and a receiver may
not be possible due to the existence of several objects that can attenuate,reflect, diffract or
block the transmitted signal. Thereceived signal power typically experiences considerable

variations and can change drastically in even a small distance. As an example, consider
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Fig. 1, where channel measurementsin our building are shown. It can be seen that channel
can change drastically even within small distanceintervals. Thus, communication between
mobile units can degrade due to factors such as shadowing, fading or distance-dependent

path loss [1], which can impact the overall performance of the network considerably.
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Figure 2.1: Sample channel measurementsin (left) 1D and (right) 2D.

Exact mathematical characterization of a wireless channel is extremely challenging,
dueto itstime-varying and unpredictable nature. One can possibly solve Maxwell’s equa-
tions with proper boundary conditions that reflect all the physical constraints of the en-
vironment. However, such calculation is difficult and requires the knowledge of several
geometric and dielectric properties of the environment, which is not easily available. In
wireless communication systems, it is therefore common to model the channel proba
bilistically, with the goal of capturing its underlying dynamics. The utilized probabilistic
models are the results of analyzing several empirical data over the years. In general, a
communication channel between two mobile robotic platforms can be modeled as a multi-
scale dynamical system with three major dynamics. small-scale fading (multipath fading),
shadowing (shadow fading) and path loss. These three dynamics are key to the realistic
characterization of the performance of networked robotic systems. We start this chapter
by providing a description of our robotic testbed, which was used to automate the channel

measurement process.
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2.1 An Experimental Robotic Platform for Channel M ea-

surement Collection

The analyses of thisdissertation are all accompanied by experimental validations. Assuch,
in this section we briefly describe our experimental testbed. This can help the readers un-
derstand the conditions under which our measurements are collected so they can reproduce

the results.

Traditionally, there has been considerable interest in measurement and characteriza-
tion of the received communication signal strength in the context of cellular systems
[54-58]. Automating the measurement process, however, has been difficult in the past due
to the lack of an automated mobile system. For outdoor measurements, vehicle-mounted
transceivers have been used in some experiments [57, 58]. Collecting indoor measure-
ments, however, is more chalenging. For instance, in [54], the authors use a cart to move
thereceiver and transmitter units, resulting in apositioning accuracy of about 10 cm, which
may not suffice depending on the required analysis. Using rails with motorized position-
ers is another common approach for moving the transmitter/receiver [59]. The advent of
robotic networks facilitates the design of an automated measurement system considerably
and allowsfor collecting measurementswith flexibility, reconfigurability and a high spatial
resolution. As such, we have developed a robotic testbed to automate our channel mea-
surement process. The testbed consists of two Pioneer 3-AT (P3-AT) mobile robots from
MobileRobots Inc. [60], each equipped with an onboard PC, an IEEE 802.11g (WLAN)
card and various sensors used for localization and obstacle avoidance. Each robot acts as
amobile transceiver and can record its received signal strength as it moves. The resulting
dataset isthen used in this chapter for the characterization of wireless channelsfor mobile
robotic networks and most importantly, for wireless-based obstacle mapping in the later

chapters of this dissertation.

Next, we explain the hardware and software components of our testbed in more details,

10
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including our software-based controller and navigation infrastructure.

2.1.1 Hardware Architecture

Our setup consists of two P3-AT mobile robots [60]. Pioneer 3-AT is a high performance
robotic platform from MobileRobots, which is a popular and reliable team performer for
indoor, outdoor and rough-terrain projects. We equipped each robot with a removable
electromechanical fixture to possibly hold a directional antenna. Fig. 2.2 (right) shows
one of our robots in its original form, while the left figure shows the robot with a direc-
tional antenna mounted on it. A block diagram of the hardware architecture of one of the
robots is shown in Fig. 2.3. The remote PC is a supervising unit, in charge of planning
the motion of the robots and collecting the signal strength data from the robots. Each
P3-AT base comes with an onboard PC104 and a Renesas SH7144-based microcontroller
platform to control the motors, actuators and sensors. MobileRobots provides a C/C++
application programming interface (API) library called ARIA [60] to program and control
the robot viaits onboard microcontroller platform. We aso developed a servo mechanism
to intelligently rotate the directional antenna of the robot. The servo mechanism is con-
trolled by the onboard PC of the robot through a microcontroller-based external hardware.
We make use of Hitec HS-7955TG high performance coreless digital servo motors with
180° rotation in our servo mechanism. As for the directional antennas, we use a GD24-15
2.4GHz parabolic grid antenna from Laird Technologies [61]. This model has a 15 dBi
gain with 21° horizontal and 17° vertical beamwidth and is suitable for IEEE 802.11b/g
applications (Fig. 2.2-1¢ft).

Robot Localization

Accurate localization of the robotsis crucia to proper channel measurement and analysis.

For instance, characterizing the spatial correlation of different channel dynamics requires

11
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Figure 2.2: (left) Pioneer 3-AT robot equipped with a servo mechanism and a directional
antenna. (right) Pioneer 3-AT robot equipped with an omnidirectional antenna.

accurate position information. In our testbed, each robot uses both the onboard gyroscope
and the wheel encoders for localization. Since the localization error is additive in time,
the calibration unit resets the gyroscope and the wheel encoders periodically, after an ad-
justable number of steps. Currently, our localization error islessthan 2.5 cm for every 1 m
of a straight line movement. If additional accuracy is needed over longer distances, more

advanced localization strategies, from the robotic literature, can also be utilized. Alterna-

Remote Wireless
PC Wiral Router

) Directional, Mm“m\\\\\\\\\\\\\\\\\\\\\‘\]
. (B} A Ao [ W/‘//

X HiTec
Wireless @:I H57955TG
Link
Servo
Motor

Kl

]

AVR-based
Servo Motor
Controller

Figure 2.3: A block diagram of the hardware architecture of one of the robots.
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tively, a long route can be divided into shorter sub-routes and the robot can be manually

repositioned at the beginning of each sub-route to provide a better overall accuracy.

2.1.2 Software Architecture

A high-level schematic of the software architecture is shown in Fig. 2.4. The software-
based control infrastructure consists of two application layers running on different ma-
chines: The robot-side application runs on the onboard PC of the robot whereas the
client-side application runs on the remote PC. The robot-side application is developed as
a TCP/IP server and is in charge of reading the sensory data, sending it to the client-side
application, receiving the high-level control of motion/antenna angle commands from the
client-side application and executing the commands. The client-side application, which
runsasa TCP/IP client for robot-side application, isin charge of supervising the entire op-
eration, planning the motion, generating the high-level control commandsto be sent to the
robots and collecting the signal strength data from the robots for future processing. The
microcontroller of the servo mechanism is aso programmed to decode the rotation com-
mands and send the corresponding Pulse Width Modulation (PWM) signals to the servo
motor that rotates the antenna. The operating system is Microsoft Windows XP and all
the programs are developed in C++ using M S Visual Studio 2008. The user can run both
robots simultaneously, calibrate and test the servo mechanism and run several automatic
data gathering scenarios. Among all the possible scenarios, the following two are used

extensively for the analysis presented in this dissertation:

e Scenario 1. The transmitter is a wireless 802.11g router with an omnidirectional
antennaat aheight of 1.5 m. Thereceiver isarobot with an omnidirectional antenna
at the height of 27 cm (see Fig. 2.2 (right)).

e Scenario 2: Both the transmitter and receiver are robots with different combinations

of directional/omnidirectional TX/RX antennas. Thedirectional antennaisas shown

13
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in Fig. 2.2 (left).
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Figure 2.4: The overall software architecture of the robotic platform.

2.2 Characterization of the Spatial Variations of a Wire-

less Channdl [1, 2]

In this section, our goal isto summarize the existing results on the probabilistic character-
ization of wireless channels, from the wireless communication literature, and to confirm
this characterization with our robots. Aswe have previously mentioned, a communication
channel between two robotic platforms can be modeled as a multi-scale dynamical system
with three mgjor dynamics. small-scale fading (multipath fading), shadowing (shadow
fading) and path loss. These three dynamics are key to the realistic characterization of
the performance of networked robotic systems. We first show an example of these three

dynamics through an experiment with our robotic testbed.

Fig. 2.5 shows the blueprint of the basement of our building where we made several
measurements along more than 70 routes using our experimental setup. In thischapter, un-

lesswe specifically indicate otherwise, the experimental setup consists of a Pioneer P3-AT

14
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robot (receiver) and afixed wirelessrouter (transmitter), both of which were equipped with
omnidirectional antennas. The transmitter is fixed at the height of 1.5 m and the receiver
isat aheight of 27 cm. The figure a so shows a colormap of our measured received signal
power for the transmitter at location#1. It should, however, be noted that the framework
of this dissertation is also fully applicable for modeling outdoor wireless measurements.
We used indoor measurementsin this chapter since wirelesslink quality istypically worse

inside a building (due to the higher chance of lacking aline of sight communication).
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Figure 2.5: (right) Blueprint of the basement of our building, where channel measurements
are collected — a colormap of the measured received signal power is superimposed on
the map for the transmitter at location#1 (see the pdf file for a color version). (left) A
magnified inset of the blueprint.

As an example, Fig. 2.6 shows the received signal power across route 1, as marked in
Fig. 2.5, for thetransmitter at |ocation#1 and as afunction of the distance to the transmitter.
The three main dynamics of the received signal power are marked on the figure. As can
be seen, the received power can have rapid spatial variations that are referred to as small-
scale fading. By spatially averaging the received signal locally and over distances that
channel can still be considered stationary, a slower dynamic emerges, which is caled

shadowing. Finally, by averaging over the variations of shadowing, a distance-dependent

15

www.manaraa.com



Chapter 2. Wireless Channel Modeling and Experimental Validation

trend isseen, which isreferred to as path loss. In this chapter, we provide an understanding
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Figure 2.6: Underlying dynamics of the received signal Power across route 1 of Fig. 2.5
and for the transmitter at location#1. The blue curveisthe measured received power which
exhibits small-scale fading. By averaging locally over small-scale variations, the under-
lying shadowing variations can be seen (gray). The average of the shadowing variations
then follows the distance-dependent path loss curve (dashed line).

2.2.1 Small-Scale Fading (Multipath Fading)

When a wireless transmission occurs, replicas of the transmitted signal will arrive at the
receiver due to phenomena such as reflection and scattering. Thisresultsin the following

baseband equivalent channel at time instant ¢:

=

®)
ch(t) = /fi(t)ejgi(t)’ﬂ”fc%i(t), (2.1)

=1

where N (t) represents the total number of paths that arrive at the receiving robot at time
t, f. isthe carrier frequency, and «;, 7; and ¢; are the attenuation, delay and Doppler
phase shift of the i path respectively. As can be seen from (2.1), different paths can be
added constructively or destructively depending on the phase terms of individual paths.
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As aresult, with a small movement, the phase terms can change drastically, resulting in
the rapid variations of the channel. Such rapid variations are referred to as small-scale
fading (multipath fading) and can be seen in Fig. 2.6. The higher the number of reflectors
and scatterers in the environment, the more severe small-scale variations could be. Next,
we characterize the distribution of |ch(t)| (which easily translates to a distribution for the
received Signal to Noise Ratio (SNR) since it is proportional to |ch(t)|?).

In the wireless communications literature, several efforts have been made in order to
mathematically characterize the behavior of small-scale fading. As can be seen from Fig.
2.6, the small-scale fading curve is non-stationary over large distances as its average is
changing. Therefore, it is common to characterize the behavior of it over small enough
distances where channel can be considered stationary. Then, the behavior of the average
of the small-scale variations is characterized in order to address channel dynamics over
larger distances, as we shall see in the next part. Over small enough distances where
channel (or equivalently the received signal power) can be considered stationary, it can
be mathematically shown that Rayleigh distribution is a good match for the distribution
of |ch(t)| if thereis no Line Of Sight (LOS) path while Rician provides a better match
if an LOS exists. These distributions also match several empirical data. A more general
distribution that was shown to match empirical data is Nakagami distribution [2, 62, 63],
which has the following pdf for z(t) = |ch(?)]:

2mm 2l —mz
_ > l

2
= — — , forz > 0, 2.2
ple) = e PJ ’ (22

where m > 0.5 is the fading parameter, P. = E||ch(t)|*] represent the average power
of the channel (averaged over small-scale fading) and I'(.) is the Gamma function. |f

m = 1, this distribution becomes Rayleigh: p'®(z) = %—Zexp [%—ﬂ , for 2 > 0, whereas

form = (;’””n;,*i)f , it is approximately reduced to a Rician distribution with parameter m:
. 2z(m’ + 1 1)z (! + 1

for z > 0. Similarly, distributions of the power of the channel (|ch|?), the received power
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and SNR can be derived by a change of variables. Such distributions can be very help-
ful in generating realistic communication links for the purpose of mathematical analysis,

optimization as well as simulation in robotic networks.

We verified the Nakagami distribution using several measurements in our building.
While Rayleigh and Rician distributions are more heavily assumed for the purpose of
analysis involving wireless channels, we found that a general Nakagami distribution is a
better match for most of our gathered data. As an example, consider the measurement
of Fig. 2.6, which is across route 1 of Fig. 2.5 and for the transmitter at location#1. Fig.
2.7 showsthe probability density function (pdf) and cumulative distribution function (cdf)
of three different sections of the small-scale variations across this route. These parts are
chosen such that the data can be considered stationary within each section (since small-
scale analysisisonly relevant to the small enough and thus stationary parts). It can be seen
that the distribution of the gathered data matches power distribution for Nakagami fading
with parameters m = 1.20 and m = 1.30 well. Note that since the distribution of the
power of the received signal, which is proportional to |ch(t)|?, is plotted, the figure does
not show a Nakagami distribution directly. It shows the power distribution of Nakagami
fading, i.e. the distribution of a non-negative variable whose sgquare root has a Nakagami
distribution.

While Nakagami distribution shows a good match for the distribution of small-scale
fading, mathematical analysis of the performance of a robotic network under such adis-
tribution is generally challenging. Alternatively, a simpler but sub-optimum match islog-
normal. In [64], the authors showed that a Gaussian distribution can possibly provide an
acceptable match for the distribution of the small-scale variationsin dB (albeit with some
loss of performance as compared to Nakagami). Fig. 2.8 compares the match of both Nak-
agami and lognormal to the distribution of small-scale fading for two different stationary
sections of the data of Fig. 2.6. As can be seen, Nakagami provides a considerably better

match while lognormal can be acceptable depending on the required accuracy.
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Figure 2.7: The distribution of small-scale fading using three different parts of our gath-
ered measurements. Nakagami distribution shows a very good match — (top figures) paf
and (bottom figures) cadf.
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Figure 2.8: Comparison of Nakagami and lognormal for the distribution of small-scale
fading — (left) pdf and (right) cdf.

2.2.2 Shadow Fading (Shadowing)

Asdiscussed in the previous part, the received wireless signal is non-stationary over large
distances. While small-scale fading characterizes the behavior of the channel over asmall
distance, it does not suffice for characterizing the channel over larger distances. Small-
scalevariations are the result of anumber of pathsarriving at the receiver at approximately
the same time but being added constructively or destructively, depending on their phase
terms, which results in rapid variations. As Fig. 2.9 shows, once we average over small-

scale variations, another dynamic can be observed which changes at a lower rate. Let
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P. = E[|ch(t)|?] represent the average power of the channel (averaged over small-scale
fading), as defined for (2.2). This signal varies over larger distances and is referred to
as shadow fading or shadowing. Shadowing is the result of the transmitted signal being
possibly blocked by a number of obstacles before reaching the receiver. Empirical data
has shown P, to have alognormal distribution (mathematical justification also exists by
using Central Limit Theorem [2]). Let P, g = 10log;o(P.). We have the following for
the distribution of P 45 [2, 63,65, 66]:

- 1 _ (ﬁz,dB;l"dB)Q
p(PZ,dB) - \/%O'dBe 2UdB 9 (2.4)

where ugg = Ba — 10nlog,o(d) and ogs is the standard deviation of P, g5. Consider
the distance-dependent path loss, ;« = 3/d", where d represents the distance between the
transmitting and receiving robots, n denotes the power fall-off rate and g > 0 isaconstant.
Then, it can be seen from (2.4) that e = 10log,o(11) = Bus — 10nlog,,(d) represents
the average of shadowing variations. Note that average SNR will also have alognormal
distribution.
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averaging window size ‘
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Figure 2.9: Illustration of moving average over small-scale variations in order to obtain
shadowing dynamics. An appropriate window length is chosen such that the small-scale
variations can be considered stationary over that length. Then, the value of shadowing
at the center of this window corresponds to the average of all the data points within the
window. Alternatively, the window size can be adaptive.
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Fig. 2.10 shows the pdf and cdf of shadow fading for all the collected datain the base-
ment of our building, as shown in Fig. 2.5, and for the transmitter at location#1. In order
to access the shadowing variations, the gathered data of each route is averaged locally
over small-scale fading, as illustrated in Fig. 2.9. It should be noted that the resulting
shadowing variation is non-stationary as its average changes with distance. The distance-
dependent path loss component for each route can be easily estimated by finding the best
linear fit that relates the log of the received power of the collected data to the log of the
distance traveled (see Fig. 2.6 for an example). We then remove the distance-dependent
average from shadowing variations before characterizing the distribution of the collected
data. Asaresult, the distribution of the resulting gathered data should match a zero-mean
lognormal distribution. It can be seen from Fig. 2.10 that the distribution of the log of
the shadowing variations (after removing the distance-dependent average) matches a zero-
mean normal distribution very well. The three columns correspond to averaging window
sizesof 0.4\, 1\ and 10\ from left to right, where X is the wavelength of operation. The
standard deviations for these matches are ogg = 2.7, ogg = 2.3 and ogg = 1.4, respec-
tively. As can be seen, as the averaging window size increases, the standard deviation of
the best fit becomes smaller. Thisis as expected since by averaging over larger distances,
the resulting signal becomes closer to the underlying overall average (distance-dependent
path loss). For this specific data, the best fit corresponds to the averaging window size of
0.4, with aNormalized Mean Square Error of 2.89 x 107

2.2.3 Distance-dependent Path L oss

It can be seen from (2.4) that the distance-dependent path loss, characterized as Sgg —
10nlogo(d), isthe average of the shadowing variations. This completes the relationship
between the three underlying dynamics: small-scale fading, shadow fading and path loss.
As mentioned earlier, the distance-dependent path |oss component can be found by finding

the best linear fit that relates the log of the received signal power to the log of the distance
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Figure 2.10: (top figures) pdf and (bottom figures) cdf of the log of shadow fading (after
removing the distance-dependent path loss) and the normal distribution match for all the
data gathered in the basement of our building. The three columns show the impact of the
averaging window size on the match: (left column) window size of 0.4\, (center column)
window size of 1.0 and (right column) window size of 10.0\, with A = 0.125 m denoting
the wavelength of the transmitted signal.

traveled. For instance, for the data of Fig. 2.6, path loss component can be characterized
as —17.35 — 301log;,(d). It should be noted that the parameters of path loss curve, such
as exponent n, vary from route to route. They can even vary within aroute if the route is

considerably long.

In current networked robotics literature, it is common to use fixed-radius disc models
to model wireless channels. It isnoteworthy that this over-simplified model only considers
path loss. It furthermore assumes the same path loss parameters everywhere in the envi-
ronment. Therefore, it isonly a very crude representation after considerable averaging is

done.

2.2.4 Channel Spatial Correlation

Thus far we characterized the distribution of a wireless channel at a single position (or

equivalently at a time instant). Another important parameter that characterizes a wireless
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channel is its spatial correlation, i.e. how fast the small-scale and shadow fading com-
ponents are changing spatially. Channel spatial correlation plays a critica role in the
cooperative operation of autonomous agents. For instance, it impacts how well we can
predict channel spatial variations [67—69] and embed the corresponding communication
objectives in a motion-planning function [68, 69].

Spatia correlation of small-scale fading depends on the speed of the robots, frequency
of operation and antenna beamwidth/gain, among several other factors. The least corre-
lation is typically observed when there exists a rich scatterer/reflector environment that
results in a uniform angle of arrival of the paths. In such cases, the power spectrum of
small-scale fading will have a form that is referred to as Jakes spectrum [1] and channel
decorrelates on the order of 0.4\, with \ representing the wavelength (5 cm for 2.4 GHz
WLAN transmission). If thisis not the case, the spatial correlation function of small-scale
fading can be mathematically derived for more general cases [1]. However, a generd
model that can fit several scenarios does not exist. For most scenarios, small-scale fading

decorrelates considerably fast, as compared to the other dynamics.

For shadow fading, there is less mathematical characterization of spatial correlation.
Gudmundson [ 70] characterizes an exponentially-decaying spatial covariance function for
the log of the shadow-fading variations, based on outdoor empirical data, which iswidely
used:

Acov,TDwIB (H‘h - Q2H> = E [(ﬁz,dB,l - MdB,1> (PZ,dB,2 - ,UdB,2>:|

_ g1 —a2ll

= 0'386 Xe , q1,42 € Rz (25)

where FZ,dB,l and ?Z7d572 are the average power of the channel (averaged over small-scale
fading) at positions ¢; and ¢, respectively, qs 1 and pqs 2 are the corresponding path loss
components, ¢3; is the variance of the log of shadowing as defined in (2.4) and X, is

the decorrelation distance, which is defined as the distance at which the autocovariance
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reaches 1/e of its maximum value. It has been shown that the decorrelation distanceison

the order of the size of the blocking objects or clusters of objects[2].

We used our channel measurements and found the exponential to be a good match for
the correlation of shadowing. Figure 2.11 shows the normalized autocovariance function
for the data gathered in route 2 of Fig. 2.5 with the transmitter at location #1. It can be
seen that the real autocovariance function matches the exponential model considerably
well athough thisis an indoor measurement. We see similar matches across other routes
of Fig. 2.5.

1

— experimental data
- = =exponential fit
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Normalized autocovariance
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Figure 2.11: Exponential match for the normalized autocovariance of thelog of shadowing
variations. It can be seen that exponential provides a good match.

2.3 Impact of Antenna Angle

As seen in the previous sections, small-scale fading can result in the severe fluctuations of
the received signal power, which can degrade the performance of a robotic network con-
siderably. The main contributor to such fluctuationsisthe fact that different multipaths can
be added constructively or destructively depending on their traveled routes. One possible
way to mitigate the impact of multipath fading is to use adaptive directional antennaswith

asmall beamwidth (angle). A smaller beamwidth can limit the number of multipaths that
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reach the receiver, which will reduce the chance of the paths being added out of phase.
This approach, however, would require alignment and adaption of the transmitting and re-
ceiving antennas in order to make sure that they face each other when communicating. As
such, it does not work for non-robotic communication systems, such as cellular systems
or Wireless Local Area Networks (WLAN), where control of angle is simply not possi-
ble. In arobotic network, however, the angle can be adapted. Each robot typically knows
the position of another robot in the network, which can be used for on-line adaption and

alignment of directional antennas.

Aswe showed in Section 2.1, we equipped our robots with adaptive directional anten-
nas in order to see their impact on multipath fading. Fig. 2.12 (left), for instance, shows
an operation using an adaptive and an omnidirectional antenna whereas in the right fig-
ure, both robots are using adaptive antennas. Fig. 2.13 shows the impact of small antenna
beamwidth on small-scale fading. The figure shows the received signal power across route
2, marked on Fig. 2.5, and for the transmitting robot at location#2. In the omni-to-omni
case, both the transmitter and receiver are omnidirectional. In the omni-to-dir case, the
transmitter is omnidirectional while the receiver is directional. Finally, for the dir-to-dir
case, both the transmitter and receiver are directional. Our directional antenna has a hori-

zontal and vertical beamwidth of 21° and 17° respectively.

It can be seen that the dir-to-dir case results in the smallest amount of variations.
To measure this, the standard deviations of the received signal power from the distance-
dependent path loss are calculated to be 4.53, 2.44 and 1.89 for the omni-to-omni, omni-
to-dir and dir-to-dir cases, respectively. Furthermore, it can be seen that the overall signal
power increases as we use directional antennas. We saw similar behaviors across other
routes in our building. This shows the potential of directional adaptive antennas for net-
worked robotic applications. In the next sections, we extensively use such antennas to
limit the impact of multipath fading on our proposed wireless-based obstacle mapping

framework.
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Figure 2.12: (left) Pioneer robots gathering data at the basement of our building with
the transmitter using an omnidirectional antenna and the receiver using a directional one.
(right) Pioneer robots using directional antennas for both transmission and reception.

24 Summary

In this chapter, we utilized the knowledge available in the wireless communication liter-

ature in order to provide a comprehensive overview of the key underlying dynamics of
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Figure 2.13: Impact of antenna angle in reducing small-scale fading. It can be seen that
using an adaptive antenna with a small beamwidth can reduce the amount of multipath

fading considerably and also increase the overall received signal power.
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wireless channels. small-scale fading, shadowing and the distance-dependent path loss.
We confirmed the characteristics of these dynamics experimentally by making an exten-
sive number of channel measurements with our robotic testbed. In order to automate the
channel measurement process, we developed a robotic testbed. We furthermore showed
how adaptive directional antennas can effectively reduce the effects of multipath fading
on the received signal strength. In the next chapter we will introduce our wireless-based
obstacle mapping framework, which is based on the fact that the shadowing component
of awireless transmission containsimplicit information on the objects located on the path

between the transmitter and receiver.
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Chapter 3

Wireless-Based Compressive

Cooper ative Obstacle Mapping

In this chapter, we consider the problem of cooperative mapping of obstacles based on
wireless measurements. As previously mentioned, we are interested in mapping with see-
through capabilities, i.e. an approach that allows a group of mobile agentsto map occluded
obstacles without having to sense them directly. This can be particularly useful in severa
scenarios such as search and rescue, surveillance, and threat detection. It can also save the
overall obstacle mapping time and energy in any cooperative robotic scenario by eliminat-

ing the need for direct sensing of all the objects.

In general devising strategies for see-through mapping is considerably challenging
since traditional sensing and mapping techniques can not be used. In [6-8], Mostofi pro-
posed a framework for mapping of occluded obstacles based on wireless measurements
and compressive sampling theory. In this chapter, we summarize that work asitistheline
of work we will follow in thisthesis. More specifically, we use wireless channel measure-
ments between pairs of robots in order to extract information on the visited objects along

the communication path. However, extracting this information from a wireless reception,
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without making a prohibitive number of measurements, is very challenging due to several
propagation phenomena such as multipath fading discussed in Chapter 2. Thus, we make
use of the recent breakthroughs in the area of compressive sampling (CS), which will al-
low usto properly map obstacles with a small number of wireless measurements as shown
in [6-8]. More specificaly, we show how the sparse representation of an obstacle map
in space, wavelet or spatia variations can be exploited in order to build a map with mini-
mal sensing. We furthermore present three sampling approaches based on coordinated or

random wirel ess measurements [6-8].

We start this chapter by providing a brief overview of CS theory as relevant to our
obstacle/object mapping framework.! We then explain the details of our wireless-based
mapping framework and show how a group of mobile nodes can build a map of obstacles
(includes mapping completely blocked objects) by taking very few wireless measurements.
We furthermore introduce our strategiesfor sampling, sparsity domains and reconstruction
methods.

3.1 An Overview of Compressive Sampling Theory [3-5]

The new theory of compressive sampling (also known as compressive sensing or CS)
is based on the fact that real-world signals typically have a sparse representation in a
certain transformed domain. Exploiting sparsity has arich history in different fields. For
instance, it can result in reduced computational complexity (such asin matrix calcul ations)
or better compression techniques (such as in JPEG2000). However, in such approaches,
the signal of interest is first fully sampled, after which a transformation is applied and
only the coefficients above a certain threshold are saved. This, however, is not efficient
as it puts a heavy burden on sampling the entire signal when only a small percentage of

the transformed coefficients are needed to represent it. The new theory of compressive

1The readers are referred to [3-5] and the references therein for amore general study of CS.
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sampling, on the other hand, allows us to sense the signal in a compressed manner to
begin with. Consider a scenario where we are interested in recovering a vector x € RY.
For 2D signals, vector x can represent the columns of the matrix of interest stacked up to
form avector. Let y € R where K < N represent the incomplete linear measurement

of vector x obtained by the sensors. We will have
y = du, (3.1

where we refer to ® as the observation matrix. Clearly, solving for = based on the obser-
vation set y isan ill-posed problem as the system is severely under-determined (K < N).
However, suppose that = has a sparse representation in another domain, i.e. it can be

represented as alinear combination of a small set of vectors:
r=TX, (3.2

whereT" isaninvertiblematrix and X isS-sparse, i.e. |supp(X)| = S < N where supp(X)
refers to the set of indices of the non-zero elements of X and | - | denotes its cardinality.
This means that the number of non-zero elementsin X is considerably smaller than V.

Then we will have
y=VX, (3.3)

whereV = ¢ x I'. If S < K and we knew the positions of the non-zero coefficients of
X, we could solve this problem with traditional techniques like least-squares. In general,
however, we do not know anything about the structure of X except for the fact that it is
sparse (which we can validate by analyzing similar data). The new theory of compressive

sensing allows us to solve this problem.

Theorem 1 (see[3] for detailsand the proof): If K > 25 and under specific conditions,

the desired X isthe solution to the following optimization problem:

min|| X ||, suchthaty = U X, (3.4)
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where || X ||o = |supp(X')| represents the zero norm of vector X.

Theorem 1 states that we only need 2 x S measurements to recover X and therefore
x fully. This theorem, however, requires solving a non-convex combinatorial problem,
whichisnot practical. For over adecade, mathematicians have worked towards devel oping
an almost perfect approximation to the ¢, optimization problem of Theorem 1 [71, 72].

Recently, such efforts resulted in several breakthroughs.

More specifically, consider the following ¢; relaxation of the aforementioned ¢, opti-

mization problem:

min|| X||;, subjecttoy = U X. (3.5

Theorem 2: (see [3], [4]) Assume that X is S-sparse. The ¢; relaxation can exactly
recover X from measurement y if matrix ¥ satisfies the Restricted |sometry Condition for
(25,2 — 1), as described below.

Restricted |sometry Condition (RIC) [5]: Matrix W satisfies the RIC with parameters
(Z,e)fore e (0,1) if
(1 = e)llellz < [[el]2 < (1 + €)][c]]2 (3.6)
for al Z-sparse vector c. The RIC is mathematically related to the uncertainty principle
of harmonic analysis [5]. However, it has a simple intuitive interpretation, i.e. it ams at
making every set of Z columnsof the matrix ¥ as orthogonal as possible. Other conditions
and extensions of Theorem 2 have also been developed [73,74]. Whileit isnot possibleto
define all the classes of matrices ¥ that satisfy RIC, it is shown that random partial Fourier

matrices|[75] aswell asrandom Gaussian [ 76]- [77] or Bernoulli matrices[ 78] satisfy RIC
(astronger version) with the probability 1 — O(N M) if

K > ByS x log? N, (3.7)

where B, isaconstant, M is an accuracy parameter and O(-) is Big-O notation [3]. Eq.

3.7 shows that the number of required measurements could be considerably lessthan N.
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While the recovery of sparse signals is important, in practice signals may rarely be
sparse. Most signals, however, will be compressible, i.e. most of the energy of the signal
isin very few coefficients. In practice, the observation vector y will aso be corrupted
by noise. The ¢; relaxation and the corresponding required RIC condition can be easily

extended to the case of noisy observations with compressible signals[79].

3.1.1 Reconstruction Approaches
Basis Pursuit (BP): Reconstruction Using ¢; Relaxation

The ¢, optimization problem of Eq. 3.5 can be posed as a linear programming prob-
lem [80]. The compressive sensing algorithms that reconstruct the signal based on /7,
optimization are typically referred to as “Basis Pursuit” [4]. Reconstruction through ¢,
optimization has the strongest known recovery guarantees [5]. However, the computa-
tional complexity of such approaches can be high. The ¢; magic toolbox [81] provides
several optimization tools for solving the aforementioned ¢, relaxation and its variations.
The computational complexity, however, can be high, especially when dealing with real
data. SPARSA [82], GPSR [83] and AC [84] are afew examples of the continuing attempts
to reduce the computational complexity of the convex relaxation approach. Overall, we
found SPARSA to be more computationally efficient yet effective in solving this problem

and we will useit in the subsequent chapters.

Matching Pursuit (MP): Reconstruction using Successive I nterference Cancellation
[5, 85, 86]

While the ¢; relaxation of the previous part can solve the compressive sampling problem
with performance guarantees, its computational complexity can be high, as mentioned

above. Alternatively, there are greedy approaches that can solve the compressive sampling
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problem more efficiently, at the cost of a (possibly slight) loss of performance. Next, we

summarize such approaches.

The Restricted Isometry Condition implies that the columns of matrix ¥ should have
a certain near-orthogonality property. Let U = [, ¥, ... U], where ¥, represents the it"
column of matrix ¥. We will have y = Zj\le W, X;, where X; is the ™ component of

vector X. Consider recovering X;:

Uiy v,

oy = X+ > o X (3.8)
! ‘ desired term zzld‘?ﬁi ¢ !
inter]?errence

If the columns of ¥ were orthogonal, then Eq. 3.8 would have resulted in the recovery
of X;. For an under-determined system, however, this will not be the case. Then there
are two factors affecting recovery quality based on Eq. 3.8. First, how orthogonal isthe i
column to therest of the columnsand second how strong are the other componentsof X. In
other words, it isdesirableto first recover the strongest component of X, subtract its effect
from y, recover the second strongest component and continue the process. Orthogonal
Matching Pursuit (OMP) iteratively multipliesthe measurement vector, i, by U, recovers
the strongest component, subtractsits effect and continue again [85]. Let /s denote the set
of indices of the non-zero coefficientsof X that isestimated and updated in every iteration.
Once the locations of the S nonzero components of X are found, we can solve directly for
X by using aleast squares solver: X =  argmin ||y — ¥X||,. A variation of OMP,
Reqularized Orthogonal Matching Purstit (ROMP). was later introduced by Needell et
al. [5]. The main difference in ROMP as compared to OMP is that in each iterative step, a
set of indices (locations of vector X with non-negligible components) are recovered at the

same timeinstead of only one at atime, resulting in a faster recovery [5].
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Reconstruction using Total Variation Minimization

In our case, we are interested in reconstructing an obstacle map. Thus, the spatial vari-
ations of the map (gradient) are also considerably sparse. In such cases, another re-
lated sparsity-based reconstruction approach is to use the sparsity in the gradient [3],
[81], [87]. Let f = [f;;] denote an m x m matrix that represents the spatial function

of interest. Define the following operators. D, ; ;(f) = firg = fug i <m and
0 1=m

i1 — Jij 1< . . .

Dyii(f) = figer = fug G <m . Then, the Total Variation (TV) function is defined

0 J=m
asfollows:
TV(f) =D _IIDi; (NI (39

ij

where D; ;(f) = [Dn;(f) D..;(f)], and the ||.|| operator can either represent the ¢,
norm, corresponding to the anisotropic discretization of TV, or the /5, norm, corresponding
to theisotropic discretization of TV. TV minimization approaches then solve the following

problem or avariation of it:

min TV(f), subjecttoy = ¥, x X, (3.10)

where X isa column vector that results from stacking up the columns of matrix f, and y
is the observation vector, which is linearly related to X through matrix ¥ ;. In [88], the
authors show that solving Eq. 3.10, based on both isotropic and anisotropic TV, results
in asimilar reconstruction. We have also observed that at the low sampling rates used in
this dissertation, anisotropic and isotropic TV yield very similar results, in terms of speed
of convergence and reconstruction quality. Consequently, unless we specifically indicate

otherwise, the results of this dissertation are based on using anisotropic TV.

The concept of Total Variation was first introduced in [89] for image denoising. TV

minimization isavariant of ¢, relaxation that tends to give sharper results on certain types
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Figure 3.1: Anindoor obstacle map with the obstacles marked in white and theillustration
of the proposed compressive cooperative mapping using coordinated (left) and random
(right) wireless measurements.

of signals[90], and is effective in restoring signals that have staircase characteristics [91].
Thus, it is especialy appropriate for the recovery of obstacle maps since the borders,
separating different objects, result in sharp discontinuities. Recently, TVAL3 (TV Min-
imization by Augmented Lagrangian and Alternating Direction Algorithms) is proposed
for solving the TV minimization problem efficiently and robustly, which we will use ex-

tensively in this dissertation [87].

3.2 Compressive Wireless-based Obstacle Mapping [6-8]

Let an obstacle map refer to a 2D (or 3D) map of the environment, where we have zeros
at locations where there is no obstacle and non-zero values at obstacle locations. Each
non-zero value could be the decay rate of the wireless signal within the object at that
location. Let g(u, v) then represent a binary obstacle map at position (u, v) for u,v € R.
We consider building a 2D map of the obstacles in this work. For instance, for real 3D

structures, we reconstruct a horizontal cut of them, as shown in Section V. It should be
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noted that our proposed approach can also be easily extended to 3D maps. Figure 3.1
(both left and right) shows a sample 2D map where a number of vehicles want to map the

space before entering it. We will have

(3.11)

1 if (u,v) isan obstacle
gn(u,v) =
0 else

Consider communication from Transmitter 1 to Receiver 1, asmarked in Fig. 3.1 (left). As
we showed in Chapter 2, a wireless transmission can be degraded by several factors [1],
namely path loss, shadowing and small-scale fading. Since shadowing is caused by block-
ing obj ects, each obstacle along the transmission path leavesits mark on the received signal
by attenuating it to a certain degree characterized by its properties. A communication from
Transmitter 1to Recelver 1in Fig. 3.1 (left), therefore, containsimplicit information of the
obstacles along the communication path. Consider the dashed ray (line) that corresponds
to distance ¢ and angle 6 in Fig. 3.1 (left). Thislineis at distance ¢ from the origin and
is perpendicular to the line that is at angle 6 with the x-axis. Let P(6,t) represent the
received signal power in the transmission along the ray that corresponds to distance ¢ and
angle #, as shown in Fig. 3.1 (left). We will have[1,92,93],

P(6,t) = Py(0, t)w(6,1), (3.12)
where
P,(6,t) = _ PP X @2i Mo (0t)cxi,on (6,0) (3.13)
(A(0,1)" " Soomg e !
. ,  shadowing due to obstacles

path loss

represents the contribution of distance-dependent path loss and shadowing. For the path
loss term, Pr represents the transmitted power, d(6, t) is the distance between the trans-
mitter and receiver across that ray, » isthe degradation exponent and 5 isaconstant that is
afunction of system parameters. For the shadowing (or shadow fading) term, r; o isthe
distance travelled across the i object along the (¢, t) ray and «; oy < 0 isthe decay rate

of the wireless signal within the i object. Furthermore, the summation is over the objects
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across that line. As can be seen, shadowing characterizes wireless signal attenuation as it
goes through the obstacles along the transmission path and therefore contains information
about the objects along that line. Aswe saw in Chapter 2, it is also common to character-
ize the shadowing term probabilistically, using alognormal distribution [1]. However, the
model of Eq. 3.13 is more suitable for our proposed obstacle mapping framework.

w(6,t) of Eq. 3.12, on the other hand, is a positive random variable with unit average,
which modelsthe impact of multipath fading. Asdiscussed in Chapter 2, Nakagami power
distribution or its special cases such as Rician power or exponential are common models
for the distribution of w(6,t).2 We can then model InP (6, t) as follows

InP(0,t) = InPr + B — niInd(6, 1)
transmitted power in dB path Ion(gO)
-+ Z Ti,obj (9, t>04i,0bj (97 t) + UJdB(@, t)a (314)
[

“ ~ _ multipath fading
shadowing effect due to blocking objects (<0)

where gg = Ing and wys (6, t) = Inw(6, t). Then we have

h(0,t) 2 InP(6,t) —InPr — (Bae — nind(0,t))

= E T3 obj (9, t)ai,obj (9, t) + Wwgs (9, t) . (315)
- N——
< -— multipath fading
shadowing effect

Path loss and shadowing represent the signal degradation due to the distance travelled and
obstacles respectively and wgg (¢, t) represents the impact of multipath fading. By using an

integration over the line that correspondsto § and ¢, we can express Eq. 3.15 asfollows:

h(0,t) = // g(u,v)dudv + wys(0, 1), (3.16)
line (0,t)

2Rician is a possible distribution for y/w(#,t). Thus we use the term “Rician power” to refer
to the corresponding distribution for w(6, t).
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where

a(u,v) if g,(u,v) =1
g(u,m{ o) ) =1 (3.17)
0 else

with g, (u, v) representing the binary map of the obstacles (indicated by Eg. 3.11) and
a(u, v) denoting the decay rate of the signal inside the object position (u, v). g(u,v) then
denotes the true map of the obstacles including wireless decay rate information. As can
be seen, h(0,t), obtained through wireless measurements, contains implicit information
on the obstacle map.2 This is the foundation of our wireless-based obstacle mapping
framework. More specifically, we show different ways of extracting the obstacle map

from a small number of wireless measurements, as we shall see in the next section.

3.3 Different possibilities for compressive sampling and

reconstruction

In this section, we further present the details of our framework for compressive obstacle
mapping, using wireless measurements [6-8]. More specifically, we discuss different pos-
sibilitiesin terms of 1) sampling, 2) sparsity domain and 3) reconstruction technique. A
summary of our proposed framework is shown in Fig. 3.2. Note that not all the combi-
nations of the figure result in a proper problem formulation, as we shall discuss in this

chapter.

3In practice, path loss component of Eq. 3.13 can be estimated by using a few Line Of Sight
(LOS) transmissions in the same environment as we showed in Chapter 2. Therefore, its impact
can be removed and the receiving robot can calculate h(0,t).
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Elements of Compressive Cooperative Obstacle Mapping

sampling sparsity reconstruction

/ | \ / domain \ method \

frequency coordintated random gpace  wavelet  space Basis Matching Total
space space v Pursuit Pursuit  Variation
(BP) (MP) (TV)

Figure 3.2: Elements of our proposed framework for compressive cooperative obstacle
mapping.

3.3.1 Frequency Sampling using Coordinated Wireless

M easurements

In this section, we present our obstacle mapping approach that is motivated by computed
tomography approaches in medical imaging [94], geology [95], and computer graph-
ics [96]. Consider Fig. 3.1 (left), where pairs of robots are making coordinated wireless
measurements. Consider theillustrated line at angle 0 that passes through the origin. Out-
side the structure, two robots can move parallel to thisline, in a coordinated fashion, such
that a number of wireless channel measurements are formed at different ¢ts. By changing ¢
at a specific 0, aprojection isformed (P (0, t) for aset of ts), i.e. aset of ray integrals, as
isshownin Fig. 3.1 (left).

Let G;(0y, f) represent the 2D Fourier transform of ¢, expressed in the polar coor-
dinates, where ¢; is the angle from the x-axis and f is the distance from the origin.
Let H,(0, f) denote the 1D Fourier transform of h(6,t) with respect to t: H(0, f) =
[ h(8,t)e=727tq¢. The following theorem allows us to sample the frequency response of
the 2D obstacle map, using a projection, i.e. based on the coordinated wireless measure-

ments.
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Fourier Sice Theorem: Consider the case where there is no multipath fading in Eq.
3.16,i.e. wgg = 0. Then H.(0, f), the Fourier transformation of A(6, t) with respect to ¢,
isequal to the samplesof G(6;, f) acrossanglef; = 6.

Proof: See[94].

By making a number of measurements at different t¢s for a given 6, the Fourier Slice
Theorem allows us to measure the samples of the Fourier transform of the map at angle 6.
By changing ¢, we can sample the Fourier transform of the obstacle map at different an-
gles. We can then pose the problem in a compressive sampling framework. By measuring
the received signal power across a number of rays, the vehicles can indirectly sample the
Fourier transformation of the obstacle map. Then the sparsity in the space, space TV or

wavelet domain could be used for reconstruction, as explained next.

Reconstruction using the Sparsity in Spaceor TV

Let Vi, denote the vector representation of the discrete version of G; (2D Fourier trans-
form of the obstacle map), where the columns are stacked up to form a vector. Let y,
represent the very few samples of G'; acquired using the proposed framework, i.e. wire-
less channel measurements across a number of coordinated rays and applying the Fourier

Slice Theorem.* We have,

Yr = CIDptVGf and VGf = Ff‘/gs = Yr = \ij,s‘/gs

Fourier Sampling and space or TV sparsity, (3.18)

4We assume equally-spaced spatial samples across each angle 6.
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where @, is a point sampling matrix:

Vil<i<K,3j1<j <N suchthat ®(:,j) =1 and
Vil<i<K\Vj#j,1<5,j <N,

if ®pi(i,7) =1 — (s, 5') =0, (3.19)

with K and N denoting thesizesof i and V¢, respectively. Matrix @ representsamatrix
with only one 1 in every row. If there are redundant measurements, there may be more
than one 1 in every column. Otherwise, there will be at most one 1 in every column. Let g,
represent the discrete obstacle map. Then, V,, denotes the vector representation of g, and
I' is the Fourier transform matrix, such that when applied to a vector that is formed by
stacking the columns of a 2D map, it results in the vector representation of the 2D Fourier
transform of the map. Then ¥, £ &, x I';. Such matrices meet the RIC condition, as
shownin [75]. Eq. 3.18 can then be solved by any of the compressive sensing approaches
of the previous section (BP or MP). Alternatively, we can consider the sparsity in the Total
Variation of V. In the next chapter, we show the underlying tradeoffs between these

approaches.

Reconstruction using the Sparsity in the Wavelet Domain

Typically, an obstacle map is also considerably sparse in the wavelet domain, as we shall
see later in this section. Let G, represent the 2D wavelet transform matrix of the discrete

obstacle map g,. We have,
yr = Vo, and Vg, =TV, = vy = ¥ Va,

Fourier sampling and wavel et sparsity, (3.20)

where I',, = T'y x W~ with W representing a 2D wavelet matrix such that when
applied to a vector that is formed by stacking the columns of a 2D map, it results in the

vector representation of the 2D wavelet transform of the map. Wehave U, £ &y x T,
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I mpact of Non-ideal Frequency Sampling

So far, we discussed sampling in the frequency domain using Fourier Slice Theorem.
However, this theorem is for the case where we have continuous signals. For the case
of a sampled signal (which is the case with our obstacle mapping), the theorem becomes
an approximation. The quality of the approximation will then depend on the resolution
of the sampled 2D signal and projections. We use the term non-ideal frequency sampling
to differentiate this redlistic case from the case where the frequency samples are ideally
available through Fourier Slice Theorem. Let ¢(0,t), G£(0, f), h(0,t) and H:(0, f) be
the continuous signal's, expressed in polar coordinates, as defined in the previous sections.
Let hs(0,t) represent samples of h(6,t), acquired through wireless measurements at step
intervals of A: hy(0,t) = > h(8,t = nA)d(t — nA), where §(.) is the impulse func-
tion. Let If[t(e, f) represent the Fourier transformation of this sampled signal. We have
H(0,f) =3, h(0,t = nA)e=927A = LS~ 1,(9, f — 2). Thus, to prevent aiasing,
we need A < ﬁ where €24 is the bandwidth of the corresponding continuous func-
tion at that angle (h(0,t)). Similarly, let g, denote the sampled version of g, using a 2D
impulse train. We have G (f;, f,) = 3., 3 g(i = nA, q = mA)e /2mAfimi2mmAly —
S Ga(fi — 2, f, — ™), where Gy(f;, f,) is the Fourier transformation of g,
expressed in the Cartesian coordinatesand g(i = nA, ¢ = mA) isthe origina map calcu-
lated at the inphase and quadrature components of nA and mA respectively. In order to

prevent aliasing, we need A <

55+ Where (2 represents the bandwidth of the continuous

2D obstacle map.

Wireless measurements will result in measuring H, (6, f). Then, that is related to the
2D Fourier of the sasmpled 2D map through approximation, using the Fourier Slice Theo-
rem: H,(0, f) ~ G(0, f) for samplesof f € [52, 5% ). Sincethe map (and any projection)
is space-limited, it can not be bandlimited and as such, there will alwaysbe aliasing. Then,
thesmaller A is, the better the quality of thisapproximation will be. For instance, Eg. 3.18

is written under the assumption that aliasing is negligible. In the next chapter, we show
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the impact of non-ideal frequency sampling on mapping quality.

3.3.2 Coordinated Wireless M easurements and Space Sampling

In Section 3.3.1, we used coordinated wireless measurements in order to sample the
Fourier transform of the map. Another option is to use the coordinated measurements
for direct space sampling. Let vector y. denote the vector of the gathered samples of

h(#,t) of Eq. 3.15, using coordinated measurements. We have
y. = V. X + e coordinated space sampling and TV sparsity, (3.22)

where e models the impact of multipath fading and measurement noise. In each row of
V.., the non-zero elements correspond to the obstacle map pixels that the corresponding
ray visited, with each non-zero value indicating the distance travelled in the corresponding
pixel.> This matrix may not have good RIC properties, which can result in a poor perfor-
mance if we use sparsity in the space domain (same is the case for the formulation in the
wavelet domain). As such, a better way of solving for the obstacle map based on Eqg. 3.21
isby using the sparsity in TV.

We know from the compressive sampling literature, especially in the context of 7, and
¢, optimization problems, that a minimum number of measurements is needed to find the
correct solution. For our TV-based coordinated obstacle mapping approach, we can easily

see this with a counter example.

Definition 1 - Horizontal Wall Map: We define a Horizontal Wall Map as adiscretized
obstacle map f of size m x m pixels where a homogeneous horizontal wall of length p

pixels, for 2 < p < m, isplaced along the kth row of f, with no obstacles anywhere else.

SWe can also approximate the distance travelled in each pixel by the size of aside of apixel as
long as the designated resolution of the map is not too low. This can simplify our modeling and
reconstruction, which is what we do in the next chapter.

www.manaraa.com



Chapter 3. Wireless-Based Compressive Cooperative Obstacle Mapping

Lemma 1. Consider the case where e = 0. The TV minimization of the spatial
variations of the obstacle map based on the coordinated wireless measurements y. =
U. x X + e, may not result in the correct solution if the number of gathered measurements

istoo low or the sampling motion angles are not chosen properly.

Proof. Consider the scenario where the Horizontal Wall Map is sampled with coordinated
wireless channel measurements along ¢ = 90°, such that one measurement is taken along
each of the m rows of f. Without loss of generality, we assume that the decay rate of the
wirelesssignal insidethe obstacle structureisequal to 1,i.e. « = —1inEq. 3.17and f; ; €
{0,1} Vi,j € Z,1 < i,j < m. Let X bethe vector representation of the discrete obstacle
map f. Also let ¥y, denote the corresponding measurement matrix and yq, represent the

resulting measurement vector. We have the following minimization problem:

min TV (f), subject to ygg = gy x X. (3.22)

Let [yq0]; be the ith component of ygy. Note that [yqo); = 0 Vi # k, and [yeo]x = p. Thus,
the feasible solutions are such that f; ; = 0 V(i,5),7 # k. The TV of the recovered map

can then be characterized as follows where f; ; is the value of the pixel at the i row and

5™ column of f:

TV(f) = 2(feia+ fee+. .-+ fem)
Hfen — feol + 1oz = fesl + -+ [fom — frl
= 2p+ |fu1 — fral + | fee — frsl + -+ [ fom — fral (3.23)

It can be seen that for thiscase, TV (f) isminimized if and only if f; = fro=... =
frm = L. However, it does not correspond to the original map f where the kth row has

p < m pixelsequal to 1 and m — p pixelsequal to 0. O
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3.3.3 Random Wireless M easurements and Space Sampling

Due to the environmental constraints, it may not always be possible to make coordinated
measurements. For instance, the path where the robots need to move for making coordi-
nated measurements may be partialy blocked. In such cases, the robots can make mea-
surements at different ¢ and ¢ pairs that are chosen randomly, without trying to maintain a
specific pattern. Consider Fig. 3.1 (right), where pairs of robots are making wireless mea-
surements. In this case, we do not assume that the robots are attempting to have a specific

pattern, i.e. the # and ¢ can be chosen randomly. Similar to the coordinated case, we have,
yr =V, X + e random space sampling and TV sparsity, (3.24)

where vector y, denotes the gathered samples of i(6,t) of Eqg. 3.15, using random mes-
surementsand ¥, issimilar to V.., except that in this case it does not have the coordinated
structure. Similar to the previous case, we use the sparsity in the spatial variations (TV)

for map reconstruction.

3.4 Summary

In this chapter, we considered a mobile network that is tasked with building a map of ob-
stacles/objectsin an environment, including mapping occluded obstacles. We summarized
our framework for mapping obstaclesincluding occluded ones, based on wireless measure-
ments. In order to limit the number of needed measurements, we made use of compressive
sampling theory. Specifically, we showed how the sparsity of the map in space, wavelet
or spatial variations can be exploited in order to build the map with minimal sensing. Fur-
thermore, we presented two sampling strategies based on random or coordinated wireless
measurements, the latter of which can be used for direct space sampling or sampling of
the Fourier transform of the obstacle map. On the other hand, random wireless measure-

ments are suitable for cases where making coordinated measurementsis not possible, such
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as scenarios with environmental constraints. We also discussed different reconstruction
approaches based on Basis Pursuit, Matching Pursuit and Total Variation minimization. In
the next chapter, we will analyze the performance and show the underlying tradeoffs of
these sparsity, sampling and reconstruction approaches. We aso show the good perfor-
mance of our framework with both simulations and experiments on our robotic platforms.
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Chapter 4

Tradeoffs of Wireless-Based Obstacle
M apping

In this chapter, we study the performance of our wirel ess-based compressive obstacle map-
ping framework and show the underlying tradeoffs of different sampling and reconstruc-
tion techniques. We start by discussing the case of ideal sampling in the frequency domain,
using the Fourier Slice Theorem introduced in the previous chapter, and show the tradeoffs
of different reconstruction techniques and sparsity domains. We also compare this sam-
pling strategy with coordinated space and random space sampling. We show that, under
certain conditions, the coordinated approach may perform better than the random case. We
validate our findings analytically, as well as through simulations. Furthermore, using our
experimental robotic platform, we show how to successfully map real obstacles (includ-
ing completely occluded structures) with see-through capabilities, based on only wireless

channel measurements.

We also develop a better understanding of the tradeoffs between the coordinated and
random sampling approaches. It is one of our goals to study whether the coordinated ap-

proach aways outperforms the random one and to what extend. We show that the right
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approach for comparing these sampling techniques is to look at this problem from the
perspective of optimizing the number/choice of the angular motion directions. In partic-
ular, random sampling can be considered as an asymptotic case where the total number
of given wireless measurements are randomly distributed over an infinite number of an-
gles. We then establish that the total number of available channel measurements should
be distributed over a small number of angles, that are bigger than or equal to the number
of jump angles of the structure, with a preference given to the angles of jumps. This sug-
gests that the coordinated approach does not necessarily have a better performance than
the random case unless the jJump angles are chosen. We aso validate these findings with

our experimental setup that can involve environmental constraints.

4.1 Underlying Tradeoffs of different sampling and re-

construction techniques

In this section, we show the performance of our framework for compressive obstacle map-
ping in a simulation environment. We see the underlying tradeoffs of different sparsity
domains, sampling and reconstruction techniques. As mentioned earlier, an obstacle map
istypically considerably sparse in both space and wavelet domains. Furthermore, its spa-
tial variations, measured by its Total Variation (TV), are also considerably sparse. To see
this, Fig. 4.1 (left) shows a T-shaped obstacle map. Thisisahorizontal cut of area obsta-
cle(seeFig. 4.7, first row) which we will later use to show the performance of our mapping
framework in reconstructing real obstacles. Fig. 4.1 (center) shows the 2D wavelet trans-
form of the obstacle map, using Haar wavelets. As can be seen, the map is sparse in both
domains, i.e. it can be represented by only a small percentage of the coefficients. More
specifically, in the wavelet domain, this map can be represented with only 1.82% of the
coefficients as compared to 7.52% in the space domain. Whileit is hard to mathematically

prove the higher sparsity of the wavelet domain for a general obstacle map, our analysis
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of several other obstacle maps consistently asserted this hypothesis.

Alternatively, an obstacle map is also considerably sparsein its spatial variations. For
instance, consider non-zero changes in both x and y directions as Fig. 4.1 (right) shows
for the T-shaped obstacle. Definitely, the number of changes isless than the direct number
of non-zero values in the space domain. It is hard, however, to establish any general com-
parison with the sparsity in the wavelet domain. Our analysis of several maps, however,
shows that utilizing the sparsity in spatial variations results in efficient obstacle mapping,

aswe shall explorein this chapter.

Original obstacle map Wavelet transform Spatial Variations

—5— —

Figure 4.1: A T-shaped obstacle map with the obstacle areas denoted in white, where
100% of the energy isin 7.52% of the space samples (left), its transformed representation
in wavelet domain, where 100% of energy isin lessthan 1.82% of the coefficients (center),
and its spatial variations (right).

We start by comparing the case of ideal sampling in the frequency domain, using the
Fourier Slice Theorem discussed in the previous chapter. Fig. 4.2 compares the perfor-
mance of different reconstruction techniques (SPARSA, OMP and ROMP) for the case
of frequency sampling when using the sparsity in the space domain. The figure shows
the Normalized Mean Square Error (NMSE) of the reconstruction of the T-shape of Fig.
4.1 (left) as afunction of the percentage of the measurements collected in the frequency
domain. Alternatively, the x-axis could be represented in terms of the number of angle

measurements collected.! For instance, case of one angle indicates that two robots moved

Throughout the dissertation, we may represent the performance as a function of the sampling
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parallel to each other for only one given angle (¢ of Fig. 3.1) and made wireless measure-
ments at different ¢s along that angle. As a reference point, the case of 12 angles results
in sampling only 9.09% of the Fourier transformation of this map. As such, without the
compressive sensing framework, proper reconstruction would require prohibitive number
of measurements. As can be seen from the figure, the MP approaches perform consider-
ably worse than the BP approach using SPARSA. Thisis expected as MP approaches are
simpler aternatives (but at the cost of a possible loss of performance) to the origina ¢,
relaxation method. In between MP approaches, OMP performs worse than ROMP as it
isaimed at catching only one non-zero coefficient in every iteration (see Section 3.1.1).
In terms of computational complexity, OMP also takes considerably longer than the other
two approaches, and as such is not a suitable compressive reconstruction technique for
obstacle mapping. While the BP approaches are typically computationally more complex
than ROMP, the recently-proposed SPARSA is very efficient with a computational com-
plexity comparable to ROMP. As such, it is a possible efficient technique for compressive

reconstruction of an obstacle map.

Next, we consider frequency sampling and reconstruction using the sparsity in the
wavelet domain (see Eq. 3.20). We expect to gain a considerable performance improve-
ment as the sparsity in the wavelet domain is noticeably higher than the space domain (see
Fig. 4.1). The solid and dashed curves of Fig. 4.3 compare the performance of SPARSA
reconstruction based on using the sparsity in the space and wavelet domains, respectively.
As can be seen, the performance improves drastically when considering the sparsity in the
wavelet domain. This, however, comes at the cost of a non-negligible increase in com-
putational complexity as the corresponding function handles have to deal with wavelet

transformation.

The last possibility for the case of frequency sampling isto use the sparsity in the spa-

tial variationsfor reconstruction. The solid-circle curve of Fig. 4.3 shows the performance

rate or the number of utilized angles, depending on the context.
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—a—freq. samp., space sparsity, OMP
—e—freq. samp., space sparsity, ROMP
- ¢ -freq. samp., space sparsity, SPARSA

Normalized Mean Square Error (dB)

0 5 10 15 20 25 30 35 40
sampling rate (%)

Figure 4.2: Performance of different reconstruction techniques using the proposed Fourier
sampling and space sparsity approach. As can be seen SPARSA outperforms the MP
approaches considerably. It also has a much less computational complexity as compared
to OMP and a comparable complexity to ROMP.

of this case using TVAL solver. As can be seen, this approach results in further perfor-
mance improvement. Only at considerably high sampling rates, wavelet sparsity approach
outperforms this case. Furthermore, with the newly-proposed TVAL, the computational
complexity of this approach is considerably less than both SPARSA wavelet and space
approaches. We consistently see the aforementioned observations with several other ob-
stacle maps. As such, we find frequency sampling and reconstruction based on spatial
variations a viable candidate for compressive obstacle mapping. Using the sparsity in the
wavelet domainisalso another possibility, specialy if the computational complexity isnot
a concern. Fig. 4.4 compares the reconstructed map for the aforementioned techniques,
for the case where only 9.09% of the 2D Fourier function is sampled using Fourier Slice
Theorem. Ascan be seen, the TV approach performsthe best. Thisisfollowed by wavel et
approaches, in particular BP reconstruction with SPARSA. ROMP approach and wavelet
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sparsity can also produce a recognizable map. The ROMP-based space approach, on the
other hand, results in a pointy map as it attempts to directly capture the non-zero space

values.
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Figure 4.3: Performance of different reconstruction techniques using the proposed Fourier
sampling approach. The figure compares the performance of reconstruction based on the
gparsity in space, wavelet and total variation. As can be seen, using the sparsity in the
spatial variations provides the best performance for most part. This is then followed by
using the sparsity in the wavelet domain.

So far, we considered the performance of different reconstruction techniques and spar-
sity approaches for the case of Fourier sampling. Next, we compare the performance
of different sampling techniques, i.e. Fourier, coordinated-space and random-space ap-
proaches. The solid and dashed lines of Fig. 4.5 show the performance of coordinated and
random space sampling approaches respectively, for the obstacle map of Fig. 4.1 (left).
For the coordinated space case, the x-axis can be thought of similar to the frequency sam-
pling case, i.e. coordinated measurements along a number of angles are collected. The

total number of coordinated transmissions/receptions along these angles then resultsin an
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space sparsity, ROMP wavelet sparsity, ROMP

T“

space sparsity, SPARSA wavelet sparsity, SPARSA

—— —5—

TV sparsity, TVAL

I

Figure 4.4. The reconstructed obstacle map for the case of frequency sampling when
only 9.09% of the Fourier function is sampled. The figure compares the performance of
different sparsity/reconstruction techniques.

equivalent percentage of the overall map size in pixels (the quoted sampling rate). Then,
for the random space case, the same number of transmissions/receptionsis randomly gath-
ered. This number can also be thought of as an equivalent number of frequency samples
for comparison. As can be seen, the coordinated approach outperforms the random one

considerably for the range of demonstrated sampling rates.

Figure 4.5 also showsthe performance with ideal frequency sampling. As can be seen,
if the frequency samples can be selected perfectly, the performance is considerably better
than the space approaches. In reality, however, this will not be the case as we discussed
in Section 3.3.1. In the next section, we show the impact of non-ideal frequency sampling

when dealing with real data. Aswe shall see, the performance of the frequency sampling
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case becomes comparable to the coordinated space approach for real data.
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Figure 4.5: A comparison of different proposed sampling techniques. All the reconstruc-
tionsare with TVAL.

4.2 Cooperative Mapping of Real Obstaclesusing

our Proposed Framework

In the previous section, we showed the performance of our framework in a simulation
environment. Next, we show its performance in constructing real obstacles, based on very
few wireless measurements. Specifically, we will seethat it isindeed possible to map real

obstacles and have see-through capabilities using our framework.

In our experiment, we utilize the robotic testbed described in Section 2.1. There are
two key enabling factorsthat contribute to the success of our experimental setup: 1) use of

robotic units, which enables automated positioning for collecting wireless measurements
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and 2) use of adaptive directional narrow-beam antennas. The latter is crucial in limiting
the impact of multipath fading, as we showed in Section 2.3. As can be seen from Eq.
3.15, the proposed mapping framework is based on following the shadowing component.
More specifically, the shadowing component carries information on the obstacles, which
we have utilized in our framework. As such, multipath fading appears as additional noise
and can ruin the mapping quality. Therefore, we use adaptive directional antennas with

narrow beamwidth for cooperative obstacle mapping.

We tested our framework outside, where two of our robots made a small number of
wireless measurements cooperatively, in order to build a 2D map of a number of obstacles.
Fig. 4.6 shows our robots making wireless measurements in order to see through the walls
and reconstruct the obstacle. Since our mathematical modeling of a wireless transmission
can not embrace all the propagation phenomena, we do not expect a perfect recovery with
avery small number of wireless measurementsin areal environment. However, aslong as
the reconstruction is informative, for the cooperative operation of the robots, it could be

considerably valuable.

Figure 4.6: (left) Two pioneer 3-AT robots equipped with our servo control mecha-
nism/fixture and an adaptive narrow-beam directional antennain action, making wireless
measurementsin order to map the obstacle.

In this section, we show the mapping performance for the reconstruction of the three
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obstacles of Fig. 4.7 (left column). Horizontal cuts (2D maps) of these obstacles are shown
in the right column of Fig. 4.7. Our robots then aim at reconstructing these structures,
based on only wireless channel measurements. In this dissertation, we consider recon-
struction in a horizontal plane, i.e. the goal is for the robots to map the horizontal cuts of

Fig. 4.7 (right column).

Figure 4.8 shows the mapping quality as afunction of the number of utilized angles. In
thisfigure, all the reconstructions are based on coordinated space sampling, i.e. two robots
move along anumber of anglesin parallel, asshowninFig. 3.1 (left). Aswe observed from
the previous section, coordinated space or frequency sampling and TV sparsity provided
the best overall performance and computational complexity for most cases. As such, we
used coordinated space sampling, sparsity in the spatial variations (TV) and TVAL for
reconstruction in this figure. Later in this chapter, we discuss the underlying tradeoffs

with other sampling and reconstruction techniques for real data.

Thefirst row of Fig. 4.8 shows the reconstruction of the T-shape structure for different
total number of utilized angles. For each total angle number, uniformly-distributed angles
are chosen. For instance, the first case of four total angles means that the robots made
coordinated wireless measurements, by moving along 4 pairs of paralel lines. These lines
havethe angles of 0, 90, 45 and 135 degreeswith respect to the x-axisin Fig. 3.1 (left). For
comparison with the previous results, where we discussed the performance as a function
of the percentage of the sampled points, the case of 4 anglesis equivalent to the sampling
rate of 3.03%, which is considerably low. As can be seen, by making more coordinated
measurements at 6 angles, the performance improves considerably. The improvement is
dightly less from 6 to 12 angles, as expected. Adding more measurements at alow sam-
pling rate can typically result in a more drastic improvement. Overall, the reconstructions
are noisy as expected, due to several propagation phenomenathat our modeling did not in-
clude. However, the T-shape structure, with all its details, can be easily seen. The second

row shows the mapping performance for the column structure of Fig. 4.7. In this case, if

56

www.manaraa.com



Chapter 4. Tradeoffs of Wireless-Based Obstacle Mapping

T-shape horizontal
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Figure 4.7: The figures show a T-shaped column, a circular column and a blocked column.
A horizontal cut of these structures are also shown. Our robots aim to reconstruct the
horizontal cut, using our proposed framework.
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only two angles are used, this object will not be fully observable, even if the wireless mea-
surements were perfect with no multipath fading/noise. By not fully-observable, we mean
that some details of the object will not be detectable even in the perfect sampling scenario.
For instance, in the case of 2 angles, this obstacle will be reconstructed as a square in the
best case. For the case of real measurements, as can be seen, our proposed framework tries
to reconstruct a square for the case of two angles. Aswe increase the number of anglesto
4, then the reconstruction attempts to map the curvatures as well. Similar to the previous
case, 4 angles only results in 3.03% sampling rate, which is considerably low. Still, the
structure can be correctly identified in the right location, even with such small number
of measurements. Depending on the application, the robots may not have time to make
severa wireless measurements. As such, the capability to identify and map structures with

such small sampling rates is very promising.

Finally, the last row shows the performance in mapping the blocked-column structure
of Fig. 4.7, for 4 and 8 angles. As can be seen, the reconstruction is noisy with 4 angles
whileincreasing the anglesto 8 can considerably improve the mapping quality. It isimpor-
tant to note how the robots can see through the walls and correctly map the column inside
for this case. Fig. 4.9 shows the case where a threshold is applied to three of the recon-
structed maps of Fig. 4.7,such that any value that is 10dB below the maximum is zeroed.
This was done because we noticed that there could be scenarios where reconstructed pix-
elswith very small values get magnified by some printers or monitors with certain gamma

settings. A simple thresholding can avoid such cases.

So far, we showed the performance of coordinated space sampling in mapping red
obstacles. Next, we consider the performance of the proposed frequency sampling ap-
proach. As we saw from Fig. 4.5, if the frequency samples could be chosen perfectly,
then the frequency approach outperforms any space approach considerably. However, in
reality, there will be a loss of performance due to the fact that Fourier Slice Theorem,

while fully holding for continuous functions or proper sampling of bandlimited signals,
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Original 4 angles 6 angles 12 angles

T-shape _I_

Original 2 angles

Column

Original 4 angles 8 angles

Blocked
column

Figure 4.8: Performance of our proposed framework in mapping three real structures.
The three structures and their horizontal cuts are shown in Fig. 4.7. As can be seen, the
original structures and their details can clearly be seen in our reconstruction although very
few wireless measurements were taken.

becomes an approximation when sampling space-limited signals, as discussed in Section
3.3.1. The quality of this approximation depends on the sampling resolution and the fre-
guency response of the original map. Fig. 4.10 showsthe mapping quality of the frequency
approach for two of the structures of Fig. 4.7. As can be seen, the reconstruction quality
is almost the same as that of Fig. 4.8 with coordinated space measurements (we note that
it is not exactly the same). In general, we observed that frequency sampling resultsin a

reconstruction very similar to the coordinated space approach.
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reconstructed maps reconstructed maps
with no thresholdin after thresholding

12 angles 12 angles

4 angles 4 angles

8 angles 8 angles

Figure 4.9: Mapping quality after a threshold of 10dB is applied to three of the recon-
structed maps of figure 4.8. The threshold is applied such that any value that is 10dB

below the maximum is zeroed.

4.3 Coordinated or Random Wireless M easurements?

In previous sections, our results suggested that the coordinated sampling approach may

perform better than the random case. It isthe goal of this section to thoroughly understand

and compare the performance of these two approaches and 1) better understand if and

to what extent this is correct and 2) validate our findings through experiments with our

experimental robotic setup.
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r,i

12 angles 8 angles

Figure 4.10: Performance of the proposed frequency sampling approach. As can be seen,
the reconstruction quality is very similar to that of Fig. 4.8, where coordinated measure-
ments and space sampling were used.

In order to motivate our discussion, we recall the results of Fig. 4.5 for the reconstruc-
tion of the T-shape obstacle of Fig. 4.1 (left) using TV minimization. It can be seen that the
coordinated space outperforms the random space strategy for the demonstrated sampling
rates. However, at extremely low sampling rates (for instance one angle only), the random
approach may outperform the coordinated one depending on the sampling angles. To see
this more clearly, Fig. 4.11 shows the reconstruction of the aforementioned T-shaped ob-
stacle map, for two different sampling rates. The top row shows the reconstruction for the
case where only 0.77% measurements are taken whereas the bottom row shows the recon-
struction quality for the case with 4.6% measurements. For the coordinated case of the top
left figure, all the measurements are made periodically along one angle (¢ = 0° with the
x-axisinthis case) whilethe right figure corresponds to the case of random measurements,
i.e. the measurements are randomly distributed over avery high number of angles.? It can
be seen that for the top row, the random projection can provide a recognizabl e reconstruc-
tion while the coordinated one can not provide any useful information. This makes sense

2Note that for the random case it is not necessary for each angle to have at least one measure-
ment.
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as the coordinated approach makes measurements at only one angle in this case. The ran-
dom approach, on the other hand, samples the map from possibly different views even at
a considerably small sampling rate. If the sampling rate is not extremely small, however,
the coordinated approach can outperform the random one considerably. This can be seen
from Fig. 4.5 aswell asfrom Fig. 4.11 (bottom row), where the coordinated approach can

provide an almost perfect reconstruction with only 4.6 % measurements.

random with 0.77% coordinated with 0.77%
measurements measurements

random with 4.60% coordinated with 4.60%
measurements measurements

Figure 4.11: Comparison of our mapping framework in the reconstruction of the T-shaped
structure of Fig. 4.14 at an extremely small (top row) and small (bottom row) sampling
rates in the reconstruction of a T-shaped obstacle, with (left column) random sampling
and (right column) coordinated samples.

To see thisin mapping areal obstacle, Fig. 4.12 shows the performance of the random
and coordinated approaches in mapping the T-shape structure of Fig. 4.7, for the case of
one angle for the coordinated sampling (0.77 % sampling rate), as well as for the ran-
dom case, with the same percentage of gathered measurements chosen from the pool of
available coordinated measurements for the case of 12 angles for this structure. As can
be seen, for the case of random sampling, the structure is still visible, albeit very noisy,

whereas with coordinated measurements, the structure is simply not observable at thislow
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rate. However, once the structure is sampled from more angles, the coordinated approach
can outperform the random one. It is our goal to better understand and compare the per-
formance of random and coordinated wireless measurement approachesin the rest of this

chapter.

Coordinated sampling Random sampling

v .

Figure 4.12: Comparison of coordinated and random space sampling approaches in map-
ping a real obstacle at extremely low sampling rates. Both attempt to build the T-shape
structure of Fig. 4.7 with only 0.77% measurements (only one angle for the coordinated
case).

Then, we have the following question: given atotal number of possible pair-wise wire-
less measurements, what is the optimum number of angles (optimum in terms of recon-
struction quality) to distribute the measurements over? If the optimum number of angles
becomes very large, then amore randomized strategy becomes appropriate. Before we can

answer this question, however, we need to address the choice of optimum angles.

Optimum strategy for the distribution of the measurements

Consider the case where a pair of robots are making coordinated measurements. For a
given angle 6;, we define a set of ordered ts where measurements are taken, as follows:
T; = {t1(0;),t2(6;), . .., tn,(6;) }, where N; denotes the total number of gathered measure-

ments at angle 6;. In this dissertation, we only consider periodic coordinated measure-

63

www.manaraa.com



Chapter 4. Tradeoffs of Wireless-Based Obstacle Mapping

ments with respect to ¢.3 In other words, we consider the case where the measurements
are such that for all 7, the distance At;(6;) = t;411(0;) — t;(6;),for1 < j7 < N; —1,isa
constant denoted by At. Without loss of generality, we assumethat ¢, (6;) > t,(6;).

By incorporating a random offset in the range [0, At) to the start position of the first
measurement sample along each angle, the case of random sampling can indeed be con-
sidered as a special case of coordinated, when the total number of available measurements

are randomly distributed among an infinite number of angles.

Consider a structure whose layout corresponds to Fig. 4.13 (left), which has walls
laid out along seven different angles. Consider the case where two robots are making
coordinated measurements, along a given number of angles in this environment. If the
robots can freely choose the angles across which to make wireless measurements, then it
is intuitive that the angles that correspond to the directions of the most changes (jumps)
should be sampled first. Fig. 4.13, for instance, shows the case where the robots can make
a given number of wireless measurements across a given number of angles. The figure
shows the impact of choosing some (or all) of the measurement angles to be along the
directionsof jumps. It can be seen that as the robots make more coordinated measurements
along the directions of jumps, the performance improves considerably. While proving this
mathematically for a general map is beyond the scope of this dissertation, we provide a

simple proof for the case of Horizontal Wall Map defined previously.

Lemma 2: Consider the Horizontal Wall Map of Definition 1 and the case where e =
0. Then, sampling along the angle where the majority of the jumps occur (¢ = 90°)
provides a better reconstruction quality than sampling along ¢ = 0°. Furthermore, if a
binary constraint is enforced in the reconstruction, the samples at # = 90° provide more

information.

Proof. Similar to the proof of Lemma 1 and without loss of generality, we assume that

3The observations are a'so equally applicable to the case of non-periodic coordinated sampling.
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N —N N/

Figure 4.13: (left) An obstacle map with discontinuities occurring at seven angles,
(middle-left) reconstruction with no measurements along the jump angles, (middle-right)
reconstruction with some measurements along the jump angles and (right) reconstruction
with all the measurements along the jump angles.

the decay rate of the wireless signal inside the obstacle structure isequal to 1, i.e. n =
—1in Eq. 3.17. Consider the scenario of Lemma 1, where the Horizontal Wall Map is
sampled with coordinated wireless channel measurements along # = 90°, such that one
measurement is taken along each of the m rows of f. Let gy, and 9, be as defined in
Lemmalfor thiscase. By using theresult of Lemma 1, we can cal cul ate the reconstruction

error variance when sampling along ¢ = 90° asfollows:

2
Egy = (%—1> p+%(m_p):p_]7_' (4.1)

Next, consider the case where coordinated wireless channel measurements are made
along 6 = 0°, such that one measurement is taken along each column of f. After afew

lines of derivations, we can confirm that we have the following error variance for this case:

1 2 1 D
Ey = <——1> p+—(mp—p)=p—=—. (4.2)
m m m

Clearly, Eqy < Ey.

If we further place a constraint on the TV minimization problem that forces the solu-

tion to be binary for each pixel (this would be the case if we knew n a priori), then the
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solution may not be unique for the aforementioned two cases. In this case, we can further
analyze the amount of information that each of the sampling patterns provides as follows.
Consider a binary map > with 0.5 probability of having an obstacle at each of the 2™
pixels. Let X ;i represent the random vector of the stacked columns of the map and also
let X uin g represent the random vector of the map conditioned on the gathered wireless

measurements along angle 6. We can easily confirm that,

[(bein’ bein,g:goo) - H(bein) - H(bein

m
bei!)ﬁzgoo) — m2 - 10g2 (p ), (43)

where I and H arethe mutual information and the entropy respectively. On the other hand,

if the samples are such that # = 0°, then,

T(X poin, X poin g_go) = m? — plogy(m). (4.9)

Si nce (7;) S %'TJ S mp, we C0nC| Ude thaI [(bein, bei!)ﬁzgoo) 2 [(bein, beinﬁzoo).

O

This observation is important, especially in mapping indoor environments, since there
are typicaly a small number of jump angles (mainly perpendicular walls). Thus, if the
environmental constraints allow it, then the directions with more jumps should be sampled

first, for the case of coordinated mapping.

Consider the case where the robots can make a given number of coordinated wireless
measurements. We next discuss the optimum number of angles, over which the given
measurements should be distributed. In this way, we aso compare the random and coor-

dinated cases. In all these reconstructions, first the angles that correspond to the directions
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of jumps are chosen. The rest of the angles are then chosen so as to make the angle dis-
tribution as uniform as possible, while keeping the previously-chosen angles. Fig. 4.15
shows the mapping performance for the three structures of Fig. 4.14, where atotal number
of given measurements are distributed along a variable number of angles. As the num-
ber of angles increases, the randomness of mapping increases as well. As can be seen,
for each structure, there is an optimum number of angles where the coordinated measure-
ments should be distributed. For instance, for the middle and right structures of Fig. 4.14,
the optimum number of anglesis 4 whereasiit is 10 for the left one.* The results suggest
that the case of random measurements (equivalent to a very high number of angles) does
not typically provide the best performance. Furthermore, the optimum number of anglesis
typically equal to or more than the number of jump angles of the structure. Asthe structure
becomes more complicated (the left structure of Fig. 4.14), the given samples should be
distributed along more angles. We have consistently observed these behaviors with other

structures.

Figure 4.14: Obstacle maps corresponding to (left) a section of the basement of our build-
ing, (center) ablocked diamond-shaped column and (right) a T-shaped column.

“Note that this is independent of the existence of the column in the Ieft figure, since its contri-
bution to the overall structure issmall.
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Figure 4.15: Error curvesfor the reconstruction quality of the obstacle maps of Fig. 4.14,
using our coordinated approach. As the number of angles increases, the randomness of
mapping increases.

4.3.1 Comparison of the Mapping and See-Through Capabilities of

the Coordinated and Random Cases - An Experimental Test

We next show the performance and see-through capabilities of the two approaches in map-
ping an obstacle structure (that includes an occluded part). Figure 4.16 (left) shows a
structure, with its horizontal cut shown in the center figure. For the coordinated case, two
robots make coordinated movements and periodic measurements along lines with angles
0°, 90° (marked on the center figure), 45° and 135°. On the other hand, for the random
case, the transmitting and receiving robots make wireless measurements at random posi-
tions along the dashed lines of Fig. 4.16 (right), while avoiding the cases where both the
transmitting and receiving robots are on the same side of the structure. For the random
case, we consider two scenarios of unconstrained and constrained mapping. In the for-
mer, the robots are free to position themselves anywhere outside of the structure and make
measurements at any position along the dashed lines of Fig. 4.16 (right). In the latter,

however, there are environmental constraints (marked in the right figure) that prevent the

68

www.manaraa.com



Chapter 4. Tradeoffs of Wireless-Based Obstacle Mapping

robotsfrom moving along certain segments of thelines. In order to have afair comparison,

al the three approaches make the same number of wireless measurements.

horizontal
cut

environmental
constraints

Figure 4.16: (left) An obstacle structure, (center) its horizontal cut and (right) illustra-
tion of the physical constraints that limit the positioning of the robots for the constrained
case. Our robots aim to reconstruct the structure, based on only making a few wireless
transmissions from outside.

Figure 4.17 shows the reconstruction performance for different sampling rates.® Each
sampling rate denotes the total number of wireless transmissions divided by the size of the
2D map in pixels, as discussed before. The top and bottom rows show the performance
for the two cases of 0.76% and 1.83% sampling rates respectively. The three columns
show the mapping quality for the cases of coordinated, random unconstrained and random
constrained measurements from left to right. As can be seen, the coordinated case, with
measurements along four angles, performs considerably better than the random ones, as
expected from the previous discussions of the dissertation. Even at a very low sampling
rate of 0.76%, the occluded column can be clearly seen, in terms of its position and di-
mension. Furthermore, the random unconstrained case outperforms the constrained one,
as expected. As the number of measurements increases, the reconstruction performance
improves for all the cases. As mentioned earlier, we use anisotropic TV minimization

approach and TVALS3 solver [87] for all these reconstructions. Fig. 4.18 compares the

SA threshold is applied to the reconstructed figures such that any value that is 10dB below the
maximum is zeroed.

69

www.manaraa.com



Chapter 4. Tradeoffs of Wireless-Based Obstacle Mapping

sampling rate needed in order for the random (unconstrained) approach to have a similar
reconstruction quality (same MSE) to the coordinated one. As can be seen, 6.98% more

samples (3.81 times more) need to be gathered for the random case.

Coordinated Random Random
with four angles  unconstrained constrained

0.76 %

1.83 %

Figure 4.17: Comparison of the mapping and see-through capabilities of the coordinated
and random approaches in mapping the structure of Fig. 4.16, using our experimental
robotic platform. The top and bottom rows show the performance for the two cases of
0.76% and 1.83% sampling rates respectively. The three columns show the mapping qual-
ity for the cases of coordinated (along four angles), random unconstrained and random
constrained measurements from left to right. It can be seen that the mapping performance
improves considerably from right to | eft.

Finally, Fig. 4.19 comparesthe performance of the coordinated and random approaches
as a function of the sampling rate. The coordinated measurements are made along 0°,
90°, 45° and 135°, whereas the random cases make measurements at positions along the
dashed lines of Fig. 4.16 (right), as explained before. As can be seen, the coordinated case

outperforms the random ones.

As we discussed earlier, the performance of the coordinated case depends heavily on
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Coordinated Random
with four angles unconstrained

1.83% 6.98 %

Figure 4.18: Reconstruction of the structure of Fig. 4.16, with (Ieft) coordinated sampling
with 1.83% measurements along four angles and (right) random unconstrained sampling
with 6.98% measurements. Both reconstructions result in the same Mean Squared Error
(MSE).

the choice of the sampling angles. In Fig. 4.17, four angles including the jump ones
were sampled, which resulted in the coordinated case performing better than the random
one. However, the random case can perform better if the coordinated case is not sampled

along the jump angles. The next experiment shows this in mapping the structure of Fig.

——random constrained
= ® =random unconstrained I
—a— coordinated with four angles

1
L
N

-1.2r

e
_ L i B 4
R R e R e D P

normalized mean squared error (dB)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
% of measurements

Figure 4.19: Error curves for the reconstruction quality of the obstacle map of Fig. 4.16,
using our coordinated approach along four angles and our random approaches. Even at
very low sampling rates, the coordinated approach outperforms the random ones.
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4.16. For the first set of measurements, the robots make measurements along the jump
angles of the outer wall i.e. at 0° and 90°, while for the second set the measurements
are made along 45° and 135°. As can be seen in Fig. 4.20 (center), making coordinated
measurements along the angles that do not correspond to the jump angles does not result in
auseful reconstruction as neither the outer walls nor the occluded obstacle can be correctly
mapped. In contrast, if the jump angles are used, the location of the outer walls can be
correctly detected, as seen in Fig. 4.20 (left). On the other hand, Fig. 4.20 (right) shows
the reconstruction using unconstrained random wireless measurements at the same low
sampling rate used for the coordinated cases (0.76%). As can be seen, the reconstruction
isconsiderably better than the case of coordinated along 45° and 135° in Fig. 4.20 (center).

Coordinated along 0° and 90°  Coordinated along 45° and 135° Random unconstrained

Figure 4.20: Reconstruction of the structure of Fig. 4.16 with 0.76% measurements, with
(left) coordinated sampling along the jump angles of the outer walls (0° and 90°), (center)
coordinated sampling along 45° and 135° and  (right) random unconstrained sampling. It
can be seen that random sampling can be moreinformative than coordinated if the structure
is not sampled along the jump angles in the coordinated case.

Practical |1ssues of Wireless-Based Obstacle M apping

So far, we established that coordinated sampling, along a small number of angles, provides
abetter reconstruction quality and see-through capability, as compared to the random case.
Furthermore, the total number of available channel measurements should be distributed

along a small number of angles (bigger than or equal to the number of jump angles), with
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a preference given to the angles of jJumps. This comparison, however, assumes that there
are no environmental, computational or hardware constraints in implementing both ap-
proaches. In case of environmental constraints, the random case has a clear advantage. In
such cases, partial coordinated measurements can be taken, within the limits of environ-
mental constraints, in addition to random measurements. Both the random and coordinated
cases require communication of position information for antenna alignment. Furthermore,
they need narrow beamwidth antennas, to limit multipath fading. The random case, how-
ever, also requires a constant control and adaptation of the antenna angles to maintain the
alignment. Thus, it needs a more advanced hardware. The coordinated case, on the other
hand, requires coordinated movement of the robots. Finally, the computational complexity
of solving for the map is lower, using the coordinated approach. In summary, we envision
that both approaches will be used in practice, depending on the operation environment and

the avail abl e hardware/software resources.

4.4 Summary

In this chapter, we discussed the underlying tradeoffs of all the possible sampling, sparsity
and reconstruction techniques of our obstacle mapping framework. We validated the fea-
sibility and good performance of our framework through simulations as well as through
experimental results, where we used our experimental robotic platform to map rea ob-
stacles with very few wireless measurements. Our results indicated that the coordinated
space sampling or frequency sampling approaches, along with utilizing the sparsity in total
variations or wavelet result in a good mapping performance. We also showed a thorough
analysis of the performance of the coordinated and random sampling approaches. One
of our goals was to understand and compare the performance of both techniques, using
both simulation and experimental results. We showed that the right way for comparing

the performance of these two sampling patternsisto consider the relationship between the
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reconstruction quality and the angular directions where the map is sampled. More specif-
icaly, we established that the total number of available channel measurements should be
distributed over a small number of angles (bigger than or equal to the number of jump
angles of the structure), with a preference given to the angles of jumps. These findings
were also validated by mapping an occluded structure using our robotic testbed.

74

www.manharaa.com




Chapter 5

Integrated Wireless and Grid-Based
Obstacle M apping Framewor k

So far, we have discussed the underlying tradeoffs of different sampling, sparsity domains
and reconstruction techniques of our wirel ess-based mapping, and showed its performance
in reconstructing simple occluded structures. In general, however, obstacle mapping of
more complicated structures, solely based on wireless measurements, is extremely chal-
lenging due to al the propagation phenomena. Obstacle mapping based on laser scanner
data, on the other hand, can typically detect the visible objects with a good accuracy but
has no see-through capability. Thefirst goal of this chapter isthen to develop an integrated
framework that keeps the benefits of both laser-based (or sonar-based) and wirel ess-based
mapping approaches for the reconstruction of occluded structures. Our proposed approach
integrates occupancy grid mapping (with known or unknown poses) with compressive
sensing (CS) to fuse the laser and wireless channel measurements. More specifically, laser
measurements are used to map the parts of the environment that can be sensed directly by
the laser scanners of the robots. Based on the partial map built using the laser measure-
ments, we then identify the parts of the environment that can not be mapped efficiently

using the laser scanners (e.g., the occluded parts). These parts are then mapped based on
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our wireless-based mapping framework. Our goal is to enable mapping of occluded struc-
tures that can not be mapped with only laser scanner data or a small number of wireless

measurements.

In previous chapters, we discussed compressive sensing methods based on ¢/, or TV
minimization. Recently, the compressive sensing problem has been considered from a
Bayesian perspective [97-99]. The goa of Bayesian Compressive Sensing (BCS) isto
reconstruct the signal by using an a prior probability distribution that preserves the spar-
sity [100]. A valuable property of the BCS approach is that it also provides a posterior
belief of the signal of interest (an estimated variance). Therefore, it is possible to calcu-
late a measure of uncertainty for the estimation of each cell, which is not possible using
traditional CS methods. This property of BCS makes it a potential candidate for prob-
abilistic obstacle mapping as it allows for online adaptive data collection. However, the
applicability of BCS approach for see-through mapping of real obstacles, based on wire-
less measurements, has not been studied before. Therefore, the second goal of this chapter
is to develop an integrated grid mapping and BCS approach for mapping of occluded
structures. Along this line, we compare the performance of our BCS-based and TV-based
integrated approaches, using both simulated and real data, and shed light on the underlying
tradeoffs. We then show how the estimated variance of the BCS approach can be utilized
to devise adaptive online data collection strategies that guide the robots to make wireless
measurements at positions that minimize the uncertainty of the estimated map. In general,
the BCS-based mapping approach relies on an initial estimation of the underlying model
parameters, which requires some form of a priori measurements and can be prone to er-
ror propagation. On the other hand, the estimated variance can be informative for adaptive
path planning. Thus, it isworth studying both integrated approaches since a given scenario

may favor one over the other.
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5.1 System model

Consider the case that a workspace VW C R? needs to be mapped by ateam of M mobile
robots.! We discretize VV into n small non-overlapping cells. The map of the workspace
then refers to a binary vector z = [z, -, x,|T, where 2, = 1 if there is an obstacle in

the k™ cell in the workspace, and x;, = 0 otherwise.

As in previous chapters, each mobile node collects wireless channel measurements
by using a wireless communication device (e.g. alEEE 802.11 WLAN card) along with
adaptivedirectional antennas. Additionally, each robot isalso equipped with laser scanners
in order to collects laser measurements. A schematic of the mapping scenario considered

in this chapter isshownin Fig. 5.1.

trajectory of TX robot
discretized workspace
T P PP P PP P PP PP
e e e T T
e e e T T
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TX robot HHH EEEE
antenna%\ = HH
JFI oame FEH RX robot
o = T ]
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wireless - 1
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. \ HH
N EEEE|
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T e e T
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T T T T T P P P P T
trajectory of RX robot

Figure 5.1: Schematic of the proposed integrated mapping scenario using laser and wire-
less channel measurements.

1Although for our experiments we use only two mobile robots, the proposed mapping frame-
work of this chapter is applicable to more than two robots. We, therefore, introduce our framework
for a team of M robots that cooperate to map the workspace. However, we assume that mea-
surement collection is coordinated (or is done serially) such that different transmissions are not
interfering with each other.
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Note that the tragjectories of the robots when taking the laser measurements may not
be the same as their trgjectories when taking the wireless channel measurements. In other
words, the laser and wireless channel measurements could be available from two different

sets of tragjectories for the robots.

511 Laser Measurement Model

Let 2;; denote the laser measurement of the ;™" mobile robot at time step ¢.2 Furthermore,
let gir = (&4,0:.), for &, € Wand 6, € (—m, w|, represent the position and orientation
of the i" mobile robot at time step ¢ when taking the laser measurement. We show by
z; and ¢, the stacked vectors of z;; and ¢;, of al the robots at time ¢, respectively. The
stacked vectors of z; and ¢, from time step 1 to time step ¢ are also shown by z.; and ¢4,

respectively.

By the laser measurement model, we mean the probabilistic model that relates z; ,,
¢+ to the map x at any time ¢. In the robotics literature, this model is generally found
empirically and is given in two different ways. The forward measurement model for laser
scanners gives p(z;.¢|x, ¢i.+), i.e., the probability density function (pdf) of z;, conditioned
on z and ¢; ; [23]. The reverse measurement model, on the other hand, givesp(z |z ¢, ¢;.t),
i.e., the probability of the presence or absence of an obstacle in the £ cell conditioned on
21 and g; ¢ [23]. The probability p(z|z; ., ¢;+) IS then calculated assuming independent z,:

p(l’fzi,t, qi,t) = HZ=1 P(ﬂﬂk ’Zi,ta Qi,t)-

In Section 5.2, we summarize how the forward or reverse measurement models can
be used to calculate the map posterior probability, i.e., the posterior probability of having
an obstacle in each cell, at any time t. The map posterior can then be used to find the

cells that have not been scanned efficiently by the onboard laser scanners of the robots

2For atypical laser scanner (e.g. SICK LMS laser range finders), z ; is a vector of a fixed
number of scalar range measurements.
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up to time ¢. After using all the collected laser measurements of the robots, z, for such
cellsare estimated based on the wirel ess channel measurementsin our proposed integrated
framework. In this framework, we integrate occupancy grid mapping with Bayesian com-
pressive sensing (BCS) and TV minimization to map the parts of the map that could not
be seen by the laser scanners of the robots. These two methods are explained in Sections

5.3 and 5.4, respectively.

5.1.2 Wireess Channd Measurement Model

In addition to the laser measurements, the robots also take a set of wireless channel mea-
surements. These measurements can be collected while the robots take the laser measure-
ments or after taking the laser measurements along a different set of trajectories. Let y; ;;
denote the received signal strength indicator (RSSI) measurement between the i robot
as the transmitter (TX) and the ;™ one as the receiver (RX) at time ¢.3 In Eq. 3.14 we
showed an expression for the received signal strength between a wireless transmitter and
areceiver. Here we summarize that discussion. Asin Chapter 2, we have the following

expression for y; ; ;, in the dB domain, where we instead use log in base ten [93, 101]:

Yigt = Basig — 10810 (1€ — &all) =0T (G &)+ wapije (5.1
~ - BN ~ ———
path loss shadowing multipath fading

where (gg,; ; is the path loss constant and 7, ; is the path loss exponent for the channel
between robots i and j. For the shadowing term, the vector o contains the exponential
decay coefficients of the wireless signal at each cell, i.e. for each cell £, we have o, = 0
if 2z, = 0, and o, > 0 otherwise. Note that in Chapters 3 and 4, we used a(u,v) to
only denote the decay rate at position (u, v) of the map if there was an obstacle (see Eq.
3.17). Wethen let V, denote the vector representation of the whole discrete map by using

« and adding zeros for the places where there is no obstacle. For the sake of simplicity

3Note that the wireless channel measurements may not be available for every pair (i, 7). In
other words, only a subset of robots are typically used for channel measurements.
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of notation, in this chapter, we simply use o to represent V, by assuming that o = 0
when thereis no obstacle. The k™ element of vector (&, ;, £;,) isthe distance that theline
segment between &, ; and &;, travels across the £ cell multiplied by log,, e. Finally, the
term corresponding to multipath fading, wgg; ;. can be modeled as a zero-mean random

variable, which iswhat we will assume henceforth in this chapter.

By subtracting the path loss terms from y; ;. in (5.1), stacking up al the centered
(unbiased) wireless measurements with an arbitrary order, and flipping the sign, we get

the following:
y = VYa+ wg, (5.2)

where ¢ is the stacked vector of the centered RSSI values, ¥ is a matrix with its rows
given by ¢ (&4, &) in the same order as the elements of g, and wgs is the vector of
zero-mean random variables wgg ; ;. 1N order to use the BCS method for estimating the
decay coefficients in Section 5.3, we furthermore assume that the elements of wgs are
uncorrelated Gaussian random variables with the variance of ¢2. This implies that the
pdf of ¢ conditioned on «, i.e., p(g|«), can be characterized by a multi-variate zero-mean
Gaussian pdf with covariance matrix 21, for I,,, denoting the n.,-dimensional identity
matrix and n,, representing the number of total wireless channel measurements. 1n Chapter
2 we used a stationary chunk of our experimental data to show that distributions such as
Nakagami or Rayleigh may better characterize wqg in non-dB domain [101]. We also saw
that a Gaussian distribution (in the dB domain) can also provide agood enough fit [64]. In
this chapter we assert this with our channel measurementsin Fig. 5.2. In this experiment,
we take the RSSI values of the wireless channel measurements between two robots (in
the setup of Fig. 5.1) and subtract the ideal measurements (in dB) to obtain the noise
component as follows: wgg = 7 — Ya. Fig. 5.2 then shows the distribution of this noise,
which confirms that a Gaussian distribution can provide a good enough fit. The mean and

standard deviation of this best fit are i = 0.22 and 6, = 10.25, respectively.

Note that vector « isrelated to the binary vector z. It is, however, areal vector as op-

80

www.manaraa.com



Chapter 5. Integrated Wireless and Grid-Based Obstacle Mapping Framework

— Experimental data
— Best Gaussian fit

Probability density function

A,

—%0 -25 0 25 50
Received noise (dBm)

Figure 5.2: The distribution of the noise (wqg) of Eq. 5.2 from our experimental data and
the corresponding best Gaussian fit (2 = 0.22 and 65 = 10.25).

posed to abinary one, asit showsthe decay coefficients of the cellsthat contain obstacles.
In Sections 5.3 and 5.4, we show how to estimate «, using BCS and TV minimization
methods. Since the final goal is to estimate the binary vector z, the estimated « is then
passed through a hard-limiter, as we further elaborate in Sections 5.3 and 5.4.

5.2 A Brief Overview of Occupancy Grid Mapping using

L aser M easurements

In the occupancy grid mapping, the goal is to calculate the map posterior probability,
i.e., the probability of having an obstacle (or not) in any cell, conditioned on the laser and
pose/odometry measurements. Depending on whether ¢1., isavailable, the map posterior is
found using two approaches: mapping with known poses and mapping with unknown poses
using SLAM. Next we briefly explain these two approaches. More detailed explanations
can be found in [23, 25, 26].
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521 Mapping with Known Poses

Assumethat z, fork = 1,-- -, n, areprobabilistically independent. Also, assumeno prior
knowledge on the existence of an obstacle in each cell, i.e.,, p(z), = 1) = p(z), = 0) = 3.
In mapping with known poses, the map posterior of interest is p(x|21.¢, ¢1.¢), which can
be written as follows:

P(Zt\xka %)P(%k’/zufl, Q1:t71)
p(zt’/zlztfla C]l:t)

p(xk‘zlsta Q1:t> =

?

- al p(xk:|zi,t7Qi,t)p(zi,t|%,t)
P(Zt\xk, Qt) = HP(Zi,t’%, C]z‘,t) = H p(l’k) ) (5-3)
i=1 i=1

which resultsin

M M
i—=1 P\Tk|Zit, 4i, i=1 P\Zit|qi,
Pk 21, ) = 1 ! (elzie, i) HM1 il t)p(mk‘zlzt—lu(h:t—l)' (5.4)
p(zt‘zlstfla Q1:t> Hizl p(l'k)

Let usdefine v, 2 log <w> Using (5.4), we obtain the following recursion:

p(xk:()lzlzt:‘;H:t

M
9y, =0 + Z log p(xr = 1zie, ¢it) ~ Mlog w (5.5)
k,t k,it—1 — p(xk — O‘Z'i,ta Qi,t) p(l’k _ 0) 3 .

with the property that ¥, = log (%) Since p(zy, = 1) = p(z), = 0) = 3, we have

log <m) = 0. Therefore,

p(z=0)

- i ilog p(l'k = 1’21‘,7'7 qm—) (5 6)
it p(ry =0|zir,Gir) ) '

=1 i=1

where p(zy, = 1|24, ¢i) = 1 — p(ar, = 0|24, ¢;¢) 1S given by the reverse measurement
model for the laser scanner. In case only the forward measurement models are available,

(5.6) is calculated by marginalizing the pdf p(z; |z, ¢; ;) asfollows:

LI Yow P Zirl i g, = 1)
ﬁk,t = Z Zlog <Z — ) (57)

r=1 i=1 k p(zi,T‘Qi,Ta T_g, z = 0)

where x_;, denotes al the elements of = except z,. Note that the measurement z; ; is

only afunction of the cells that fall inside the footprint of the i™" laser scanner at time t.
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Therefore, if a cell ;. fals outside the footprint of the laser scanner at time ¢, we have
plan=1|zi0,qi0) 2wy P(Zir|girtksar=1)
p(@e=0zi,0,qit) >, P(2i,7ldir @ —k,26=0)

in each cell k is calculated asfollows based on ;2 p(x), = 1|21.4, q14) =

= 1. Finally, the probability of having an obstacle

e ki’

5.2.2 Mapping with Unknown Posesusing SLAM

In case the positions and orientation of the mobile robots are not given, the map posterior
isfound using the SLAM algorithm. Given only the laser measurements and the odometry
inputs of the robots, the map posterior of interest is p(x|z1.4,u14—1) in this case, where
uy.4—1 1S the stacked vector of the odometry inputs of the robots up to timet — 1. We
next briefly summarize how p(x|z1.¢, u1..—1) can be estimated using the well-known Rao-
Blackwell particle filter (RBPF) for SLAM [25]. The RBPF for SLAM works based on

the following factorization:

p($|21:t,u1:t—1)=/ Q($|2’1:t,Q1:t) ?(QI:t‘letaul:t—l)d(h:t- (5.8)
mapping wit?w,known poses Iocali‘gation

Thisintegral is then approximated by the weighted sum of p(x|z1., ¢1.;) for a number of
potential trgjectories of the robots. Based on the Markovian property for the dynamical

model of the robots, the pdf p(q;.¢|21.¢, u1..—1) can be written as follows:

p(Ql:t’lezta Ulth) = p(Qt‘Ql:tfla 21ty Utfl)]?(%:tfl ’21:1‘/71’ ul:t72)

P\Zt|q1:t, 21:4—1 )P\ Gt |Ge—1, Ut—
= ( t‘ Ciatad 1) (t| = l)p(QLtfl’Zl:tflaul:th) (5-9)
P(Zt‘zlth, ul:tfl)

In RBPF for SLAM, the potential trgectories of the robots are represented by a number
of particles. For each particle, an individual map posterior is built sequentially based on
the new observations and the pose posterior estimates from the localization part. Assume
L particles are used. Let th] denote the potential position and orientation of the robots at
time ¢ generated by the /" particle. The general form of the RBPF for SLAM is described
by the following four steps[35]:
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1. A proposal distribution w(qt|q¥l_1, 21.4, us—1 ) 1S calculated for each particle ¢. Then

qy] isfound by sampling from this proposal distribution:

4 £
qg ] ~ W(qt‘qg:}t,p Z1:ty utfl)'

[0
2. The weights of the particles are calculated as follows; w’) = 2@lzrenicy) yhich

7
W(q[lj]t|21:tyulzt71)

resultsin the following recursion for updating the weights based on (5.9):

[€] [, 4
2e|q, 21— U
’wy] X p( t‘qu 11{@]1)]9(% ’qt Lt 1>wt[£,}1, (5.10)
W(Qt’qtt—uzlztjutq)

for p(zt\q][f]t, z1.4-1) given asfollows:
[/ / y
platlalh 21m) = 3 plale, gl plalarer, gl o). (5.11)

The updated weights are normalized such that 3% | w!’ = 1.

3. The effective number of particles is calculated as Ler, = [ijl (wtm)Q] T
Lt < Lin, for agiven threshold Ly, then resampling is performed. Thisis done by
selecting L particles, with replacement, from the set of al the particles up to time
t, with probability of selection proportional to wy]. The selected particles are given

uniform weights of .

4. For each particle, p(x|z1., qﬂ) is found using mapping with known pose methods
of the previous section. The final map posterior that is reported is then

Sy wip(ale, i),

Several proposal distributions have been utilized in the literature. For instance, the
landmark-based FastSLAM 1.0 agorithm uses the motion model as the proposal:
W(qthyi]t_l, 21y Up—1) = p(qt\qy_]l, w;—1) [32]. The more updated FastSLAM 2.0 algorithm
uses w(qt\qﬂ,l, 2y Up—1) = p(qt]qﬂ,l,zlzt,ut,l) [33]. An improved RBPF agorithm
for grids called gmapping uses a Gaussian approximation of the observation likelihood as
the proposal distribution [35].
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Note that similar to mapping with known poses, we define the quantity ¥ ; as follows

inthiscase: ¥y ; = log (z(“:”““““‘lg). Thisway, 9y ; represents ameasure of certainty

(x=0lz1:¢,u1:¢—1

for any cell k at time ¢, independent of how the map posterior is calcul ated.

5.3 Integration of Occupancy Grid Mapping and
Bayesian Compressive Sensing (BCS) for M apping
with See-Through Capabilities

In this section, we explain how the BCS approach can be used to map the portion of the
workspace that cannot be seen by the onboard laser scanners of the robots. BCS uses the
fact that the vector « issparsein the spatial domain. By applying Baysian filtering methods
and using aprior distribution for o that preserves its sparsity, BCS can effectively estimate
« in placesthat cannot be seen by the laser scanners. Next we explain this method in more

details.

Consider the partial map found using the laser measurementsup totimet (inthemiddle
or at the end of laser mapping operation). Define the following setsof indices: Z; = {1 <
k<n|Op < —du}h, Lo 2 {1 <k<n|dp, >dn}adZ, £ {1 <k <n|[d] < dul,
where vy, > 0 denotes a threshold. The setsZ; and Z, correspond to the indices of the
cells that are estimated to be free-of-obstacle or occupied-by-obstacle, respectively. In
other words, we have z;, = 0 for £ € Z;, and 2, = 1 for k € Z,, where z;, denotes the
estimate of x;,. The cellswhoseindicesarein Z, are the unknown cellswhich could not be
seen by the laser scanners. Note that laser scanners can typically provide a good mapping
quality and, therefore, every cell k that has been seen by the laser scanner of one of the

robots belongsto either Z, or Z,, with a high probability.

Let usrearrange the elements of = asfollows: = = [z} #7]", where z;, x, and

o u
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x,, denote the stacked vectors of the elements of = whose indices are in Z;, Z, and Z,,
respectively. Alsolet ¢, z, and z,, denote the vectors with the estimates of the elements
of z corresponding to Z;, 7, and Z,, respectively. Since z; and z,, are already estimated
well using laser scanners, i.e., the all the elementsof 2 ; are set to zero and all the elements
of z, set to one, the goal isthen to estimate x,, using wireless channel measurements. Our
strategy consists of two steps:

1. We first estimate the corresponding decay coefficients of the cells in Z, and Z,
jointly, based on wireless channel measurements and assuming that decay coeffi-

cients of the cellsinZ; are zero.

2. Using the estimated decay coefficients of the cellsinZ,,, weset 7, = 1, for k € Z,,,
if the estimated decay coefficient of the k™ cell is larger than a threshold oy, and

I, = 0 otherwise.

Notethat based on only laser measurements, the decay coefficients of thecellsinZ, are
not known beforehand. We, therefore, need to estimate their decay coefficients together
with the decay coefficients of the cellsin Z, in the first step. However, since these cells
are already estimated to be occupied, we do not use their decay coefficients to detect their
occupancy in the second step, i.e. we impose the decision generated by the laser scanner

for these cdlls.

Similar to vector x, let us also rearrange the elements of the decay coefficient vector «
aso=[af af aE]T. We next show how to estimate v, = [y aE]T using wireless
channel measurements and Bayesian Compressive Sensing (BCS). Consider the stacked
vector of the centered RSS| values 7 in Section 5.1.2. Using the rearranged vector o, we
get

- %5
Y= [\Ilf \110771] + Wys ~ \Ilo,uao,u + WaB, (512)
Qo oy
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where ¥, and ¥, ,, are the parts of ¥ corresponding to the elements of oy and v, ,,. Note
that weset oy ~ 01in(5.12). BCS works based on the assumption that «,, ,, is sparse, which
is the case for our obstacle mapping. The vector «,,, isthen estimated using a maximum
a posteriori (MAP) estimator and by using a prior distribution that preserves the sparsity
of a,,. Severa prior distributions have been proposed in the literature [97-99]. In this
chapter, we assume a zero-mean Gaussian prior for «,, ,,. Such aprior isvery smpleto use
and has been shown to achieve a sparse MAP estimate [99]. Conditioned on the channel

measurements 3 and assuming uncorrelated Gaussian wgg in (5.12), we have

~\ p(g|ao,u)p(ao,u)
Plould) = T I p(aa)dann (513)

~ ,~*\I’o uao.uH2
where o =1 ex (_ 5= To,ucto, ) ’
p(y‘ O,’U,) (QTF)TUgw p 20’8
P(on) = m exp (—3aq, Ry i) 1o, 1Sthe number of elements of o, and
™ 0,u

R, . isitscovariance matrix. It can be easily shown that the posterior distribution p(a, ..|7)

isalso Gaussian inthiscasg, i.e,,

_ 1 1 R _ R
plaow|y) = o T exp <——(0407u — &O,U)TZO,i(@M — @M)) , (5.14)
(2m) ™2 |Eo,u|2 2
where
N 1 T ~ 1ot —1 o
oy = —2207u\1107uy, You = —2\Ilo7u\IfO,u + Ro,u . (5.15)
o) o)

The vector &, ,, isthe MAP estimate of «,,,, which can be similarly partitioned as &, ,, =
[l all . Here, &, and &, are the estimated decay coefficients of the cellsin Z, and Z,,

o u

respectively. Then, for every k € 7, wehave 2, = 1 if &, > ayy,, and 7, = 0 otherwise.

Note that estimates of o, and R, , are needed to find the MAP estimate of «,,, in
(5.15) Next, we show how to estimate o, and R,,,, based on the channel measurements.
The estimation of o is based on Expectation Maximization as is utilized in the BCS
literature. Asfor R, ,, an uncorrelated vector is assumed in the BCS literature. In our
case of wireless-based obstacle mapping, if the spatial correlation is not considered, the
sparsest map may not be theright one. In other words, it isimportant to consider the spatial
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correlation of the map when reconstructing based on sparse wireless measurements. We

thus next show how we can have an estimate of the spatial correlation of the map.

5.3.1 Estimation of the Hyper parameters

Without loss of generality, we assume that indices of the elements of a,,, are 1, - -, n,,.
To account for the correlation of the cells, we assume the following form for R, ,: R, . =
(0ou0L,) @ Sous Where oo, = [o1,- -+ ,04,,]" isthe vector of the standard deviations
of the elements of o, , and S, ,, is their correlation matrix. In general, finding a good
model for the spatial correlation of the map is challenging due to its sparse structure.
Based on our experience with several maps, an exponential correlation matrix results in
a good reconstruction quality. Thus, we consider the following function in this chapter:
[Soulki ke = €Xp (—”5’“1;45’““» for 1 < ki, ko < ng,. Here, &, denotes the posi-
tion of the center of the mass of the k™" cell. The correlation parameter ¢ determines how

correlated the elements of «,, are.

Note that due to the high quality of laser measurements, the uncorrelated assumption
in laser mapping approach of Section 5.2 does not degrade the map reconstruction perfor-
mance. However, considering the correlation of the cells is important when mapping the

see-through parts of the workspace using the BCS method, as we indicated before.

Based on the proposed model, the hyperparameters to estimate are oy, - - - , 0, , and

(. Our proposed approach for estimating these hyperparameters is summarized into two

steps:

1. Estimatethe ¢ apriori using a number of sample maps.

2. Estimate o, - - - , 0y, , USiNG EXpectation maximization (EM) and based on the esti-
mated ¢ from the previous step.
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Next, we explain these two stepsin more details.

Estimation of the Correlation Parameter ¢

In general, coming up with an estimate of the spatia correlation of an obstacle map is a
challenging task. In this chapter, we use a set of available obstacle maps to estimate
apriori. This estimate is then utilized in our obstacle mapping with real measurements.
Consider a set X which contains a number of binary maps. For every x € X, define the
set B(z,d) 2 {(/ﬁ, k) | [l€mts — Eempall — | < e}, for asmall e. The estimation of

correlation at distance d isthen given as follows:

erx Z(kl,kQ)eB(x,d) _\(xkl b xkz)
2 vex |B(z,d)| ’

where @ and — denote bitwise exclusive-or and negation. The estimate ¢ of ¢ is then

v(d) = (5.16)

calculated by finding the best exponential fit to y(d) for a given vector of distances D =

[dy, -+, da]*. It can be easily confirmed thatf = —%, where
T
I = [log(y(dh)),- - ,log(v(da))] -
Estimation of oy, - - - , 05, , USNg Expectation Maximization (EM)

The EM approach provides an iterative method for estimating o, - - - , 0, , anhd has been
used in the BCS literature. Let usdefine p = (09, - - - , 0y, , ). AlsO, let

AT

pr=(6g, 0, ) represent the estimates of p at iteration 7. We then have,

n

E step: O(pl7) = B, 5 { 108 [p(dl00.)p 00 .

M step: p" " = argmax,O(p|p"). (5.17)

89

www.manaraa.com



Chapter 5. Integrated Wireless and Grid-Based Obstacle Mapping Framework

Let 47, and X7, denote G, and X, in (5.15) when oy, - - , 0, , are replaced with

&g, -+ 0y, - After some straightforward calculations, we then have the following:*

AT 1 1 ~ AT
®(p|10 ) = Ny 1Og(00) -5 1Og (‘ROMD - 2 Hy - \PO:UOéo,uH2
2 204

~LYar)rrtar, - QLtr(\pT U,.27,) — %tr(R‘liT ) + const.

o,u 0,u " 0,U 2 o,u o,u“o,u
2 o
(5.18)

Maximizing ©(p|p™) as afunction of p is not straightforward for ¢ > 0. At this step, we
sub-optimally assume that ¢ issmall.® We can show that for ¢ — 0, R, will be diagonal

which resultsin the following update rules for p [99]:

. ) 1/2
o7t = {n— (tr(mzu@o,uZT ) + 117 = Youdy Hﬂ 7

o,u o,u
w
T+1 T AT 12 1/2
O = “Eo,u]k,k + [ao,u}kz}

Note that although (5.19) is the true EM update rule, some authors suggested suboptimal

) k=1,--- y To,u- (519)

update rules that have a faster convergence rate in the general context of BCS[99]. Al-
gorithm 1 shows the steps involved in estimating the map using our integrated occupancy
grid and BCS method.

5.4 Integration of Occupancy Grid Mapping and Total
Variation (TV) Minimization for Mapping with See-
Through Capabilities

So far we have discussed an integrated BCS and occupancy grid mapping approach for
wireless-based obstacle mapping of hidden objects. In the previous chapters, we have

“Here we have used the fact that for a Gaussian «, with mean & and covariance ¥, we have
E{Ra} = Ra and E{aT Ra} = &T Ra + tr(RY), for any positive definite R.

5Although we assume an uncorrel ated map for the sake of estimating o, - - - , On,..» theestimate
of ¢ of Eq. 5.16 is used when calculating &7, and 27 .
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Algorithm 1. Integrated Occupancy Grid Mapping and BCS for See-Through Map-

ping
Input: z1.¢, q1.+ (if poses are known) or uy.;1 (if poses are unknown), 7, ¥, o4y, Yh, Tmaxo

Oinit,comm) Tinit,cells tol, X, €
Output: Estimate of the binary map # = [&] &, iT]T

using z1.¢; and g1 (Or uy:4—1), calculate ¥y ¢, for al k, using the occupancy grid approach of
Section 5.2;

Calculate the set of indices Z;, Z,, and Z,, and rearrange the elements of = and o accordingly
asz = [x? xk xE]T and o = [a? al OéE]T;

Set elements of & to zero and elements of z, to one;

Using a set of maps X, calculate ¢ using the approach of Section 5.3.1;

Set 68 = Tinit,comm AN 6% = Ginit con, fOr k € 1,- -+, 0y, assUming that the indices of the
T .
dementsof a,, = o) ] arel, -, ny;

for 7 < 010 Tnax dO

Calculate 67, and X7 by substituting 63, -+ , 67 and ¢ in (5.15);

7 Y No,u

Calculate 6 oo c}g;ﬁi using (5.19) or the suboptimal update rule of [99] with a

better convergence rate;

+1
—
k

If max;<x<n,, (log &’Of_ < tol break;

end

From the most updated & ,,, use &;, and set &, = U(&], > o), where U|(.) isthe vector

o,u?

indicator function;

considered a Total Variation framework for wireless-based mapping of hidden objects. In
thissection, we discuss how to integrate it with occupancy grid mapping. In the subsequent
sections, we then compare the performance of the integrated occupancy grid/BCS-based
and occupancy grid/TV-based approaches and discuss the underlying tradeoffs. As we
previously discussed, the TV-based approach does not depend on estimating any underly-
ing model parameters or assuming a specific model, which is an advantage over the BCS

approach. However, the estimated variances of the BCS approach can provide a base for
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guiding the robotsto the places better for collecting wireless measurements, aswe propose
later in Section 5.6. Thus, in this chapter we consider integration based on both approaches

and bring an understanding to the underlying tradeoffs.

We next explain how TV minimization can be used for mapping the portion of the
workspace that cannot be seen by the onboard laser scanners of the robots. Without loss
of generality, assume that the obstacle map of interest is a rectangular map and « is the
vectorized version of the 2D signal that represents the wireless decay coefficients of the
cells on the grid. Using (3.10), we then propose the following integrated approach for

estimating the parts of the map that have not been seen by the laser scanners of the robots:

1. ThesetsZy, 7, and Z, are found using the laser measurements and following the
same approach of Section 5.3. We then set 2, = 0 for k£ € Z;, and 2;, = 1 for
k e Z,.

2. The laser measurement matrix ¥, isformed. Each row of ¥, hasn elements and
correspondsto acell k € Z;, with its ™ element equal to log,, e and the rest of its

n — 1 elements equal to zero.

3. The estimate & of « isthen found by solving the following TV minimization prob-
lem using the TVAL 3 algorithm:

j v
min TV(a), subjectto |” | = o (5.20)
o 0 \Illas

4. Foreachk € Z,,, wethenset 7, = 1 if &, > ayy,, and z;, = 0 otherwise.
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Algorithm 2: Integrated Occupancy Grid Mapping and TV minimization for See-

Through Mapping
Input: z1.¢, q1.¢ (if poses are known) or uy..1 (if poses are unknown), 7, ¥, a4, and Jyp

Output: Estimate of the binary map # = [&] &, xE]T

Using z1.; and ¢.¢ (or ui:4—1), calculate ¥y, 4, for al &, using the occupancy grid approach of
Section 5.2;

Calculate the set of indices Z;, Z,, and Z,, and rearrange the elements of = and o accordingly
asz = [x? xk xE]T and o = [a? al OéE]T;

Set elements of 2 to zero and Z,, to one;

Form the laser measurement matrix ¥,g;

Solve the TV minimization problem of (5.20) using a set of initial values for the Lagrange

multipliers and « (the initial guess for « isusually the least square (LS) solution

-1
] AV /R 7 g ).
0

ao — |:\I’T \IJT
\Ijlas\IjT \Illas\IjT
From the estimated & pick &, and set &, = U (&, > aqn), Where U|(.) is the vector

las

las

indicator function;

5.5 Coordinated vs. Random Wireless Channel M easur e-

ments

The quality of our wireless-based sampling depends heavily on the positions from which
the map is sampled. In the previous chapters, we proposed two motion sampling strategies
for wireless-based cooperative mapping based on TV minimization, namely coordinated
and random approaches, which we will extensively use for our integrated approaches. Fig-
ure 5.3 summarizes both approaches. The |eft figure shows the robots making coordinated
wireless measurements at 0°. The trgjectoriesindicated by the arrowsin Fig. 5.3 (left), are
examples of routes where coordinated measurements at angles 0° and 90° can be taken.

Similar coordinated measurements can be made across any other angle.
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As discussed in Chapter 4, having the robots move in a coordinated way may not
always be possible due to environmental constraints. As such, we also consider arandom
measurement case, where the robots make wireless measurements at randomly-chosen

TX-RX positions. Fig. 5.3 (right) shows an example of such a case.

RX

Figure 5.3: An illustration of wireless-based obstacle mapping with (left) coordinated
wireless measurements and (right) random wirel ess measurements.

In Chapter 4, we established that in general TV minimization with coordinated mea-
surements provides a better reconstruction quality and see-through capability, as compared
to TV minimization with random measurements, as long as jump angles are sampled.
It now becomes pertinent to understand how BCS compares to TV minimization in the
context of both random and coordinated measurements. We start by comparing the perfor-
mance of our integrated BCS-based and TV-based approachesin asimulation environment

where we can test more scenarios. We then present our experimental resultsin Section 5.7.

Suppose that a pair of robots are trying to map the structure in Fig. 5.4. For the co-
ordinated case, the robots move periodically along routes outside of the structure. Figure

5.3 (left) shows the routes where the robots move to make measurements along 0° and 90°
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routes. Asthe number of measurements increases, the robots make measurements along
more angles, which are chosen so as to make the angle distribution as uniform as possible,
while keeping the previously-chosen angles. For the random case, the robots make mea-
surements at random positions along the dashed lines of Fig. 5.3 (right) without following
a specific pattern.

Figure 5.4: An obstacle map with the obstacle areas denoted in white.

In order to motivate our discussion, we start by comparing the performance of these
approaches for a noiseless case, i.e. when wgs;;; of EQ. 5.1 is equal to zero. In this
example, we assume that the positions of the robots are known at any time and that the
reconstruction is based only on wireless measurements, i.e. no probabilistic grid mapping
isused. We show the results as a function of the wireless sampling rate, where, as before,
each sampling rate denotes the total number of wireless transmissions divided by the size
of the 2D map in pixels. In this example, the size of the map is 64 by 64 pixels and the
following underlying parameters are used: oy, = 0.2, Ginit.comm = 0, Oinit.cen = 1, C =0.2
M, Tmax = 150 and tol = 0.001 (see Algorithm 1 for more on tol). We discuss how we
estimate the initial values of the underlying parameters for the BCS approach when we

present our experimental resultsin Section 5.7.

Figure 5.5 shows the reconstruction using only 10% of measurements. As can be
seen, TV minimization with coordinated measurements results in a perfect reconstruction.

Furthermore, similar to TV minimization, BCS coordinated also has asmaller Normalized
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Mean Squared Error (NMSE) than BCS random. As Fig. 5.6 shows, by increasing the
number of measurements to 15%, a significant increase in the reconstruction quality of
BCS coordinated is observed. For both cases (BCS and TV minimization), the coordinated
approaches outperform the random ones. Furthermore, for the random strategy, BCS has
a better reconstruction quality than TV minimization. Fig. 5.7 confirms the same trend in

the noiseless case, for arange of percentage measurements.

BCS coordinated (NMSE = -5.57093 dB) BCS random (NMSE = -2.45513 dB)

TV coordinated (NMSE = -Inf dB) TV random (NMSE = -0.523881 dB)

Figure 5.5: The reconstruction of the obstacle of Fig. 5.4 using 10% noiseless simulated
measurements.

Next, we consider the impact of noise. Aswe indicated in the wireless channel mea-
surement model of Eq. 5.12, the elements of wqg are taken to be uncorrelated Gaussian
random variables with the variance ¢2. We furthermore showed that this assumption does
indeed provide a good match with the data obtained using our experimental robotic plat-
form. We next show the effect of such noise in a simulation environment with the same

parameters as before except for: 7.« = 500 and Gipit comm = 0o-
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BCS coordinated (NMSE = -11.8105 dB) BCS random (NMSE = -6.10029 dB)

TV coordinated (NMSE = -Inf dB) TV random (NMSE = -3.40257 dB)

Figure 5.6: The reconstruction of the obstacle of Fig. 5.4 using 15% noiseless simulated
measurements.
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Figure 5.7: NMSE versus the percentage of wireless measurements in the noiseless case
for the reconstruction of the obstacle of Fig. 5.4.
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Figures 5.8 and 5.9 show the mapping performance using 15% noisy measurements
with oy = 0.1 and oy = 0.2 respectively. As can be seen, similar to the noiseless case,
the coordinated approaches provide a better reconstruction quality than the random ones.
Furthermore, TV minimization with random measurements has the worse performance for
these two sample noise variances. Fig. 5.10 then shows the NMSE as a function 0. It
can be seen that similar trends hold in thisfigure except at very low values of o, where the
random TV starts outperforming the random BCS. However, the reconstruction quality at

such high level of noise may not be acceptable anymore.

BCS coordinated (NMSE = -6.52227 dB) BCS random (NMSE = -1.15823 dB)

Figure 5.8: The reconstruction of the obstacle of Fig. 5.4 using 15% noisy simulated
wireless measurements (og = 0.1).
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BCS coordinated (NMSE = -3.46787 dB) BCS random (NMSE = 0.767066 dB)

Figure 5.9: The reconstruction of the obstacle of Fig. 5.4 using 15% noisy simulated
wireless measurements (op = 0.2).

5.6 An Adaptive Data Collection Strategy for Integrated
Obstacle Mapping

So far, we have assumed that the laser and wireless channel measurements are collected
through either random or coordinated motion patterns, without an online optimization of
the data collection process. The trgjectories can further be adapted online to better collect
laser or wireless channel measurements based on a feedback from the current mapping
guality. Online motion optimization for occupancy grid mapping, using laser measure-
ments, has been extensively studied in the robotics literature. Examplesinclude next-best-
view (NBF) [102] and frontier-based [103,104] algorithms. However, online motion adap-
tion based on afeedback from the current mapping quality for wireless-based see-through
mapping has not been studied before. In this section, we propose an adaptive strategy for
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Figure 5.10: NMSE versus o, for the reconstruction of the obstacle of Fig. 5.4 with 15%
simulated wireless measurements.

collecting wireless channel measurements that aims to improve the see-through perfor-

mance of either BCS or TV minimization methods.

Consider the obstacle-free part of the workspace 1V, C W, estimated using the occu-
pancy grid approach of Section 5.2. Without loss of generality, assume that there exists
only one pair of TX and RX robots. Let P C W, denote the set of possible positions
where the robots can be. For instance, P could be the set of positions along the rectan-
gle that surrounds the workspace (see the dashed line of Fig. 5.3 (right) for an example).
Consider the wireless channel measurements available to the robots at time ¢. These chan-
nel measurements include the channel measurements collected by the robots aong their
trajectories up to time ¢, and possibly a set of a priori channel measurements available at
the beginning of the operation. The ideais to choose the next best positions of the robots
such that the new channel measurement at time ¢ + 1 is the most informative, given the

past measurements.

We specifically propose two adaptive approaches. ad-hoc and variance-based. The
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ad-hoc approach can be used to adaptively collect wireless measurements in both BCS
and TV minimization methods. The variance-based approach, on the other hand, uses the
estimated variance of the BCS case and is therefore only applicable to the BCS method.

Let ¥, denote the measurement matrix found based on the available wireless channel
measurements up to time step t. Also let ¥, ,,; denote the part of ¥, that corresponds to
the occupied and unknown cellswhose indicesarein the set Z,, ,,, which is given at the end
of the occupancy grid mapping operation. Additionally, let io,u,t represent the estimated
covariance matrix %, ,, in the BCS method, calculated based on the available wireless
channel measurements up to time ¢. The column vector of the diagonal elements of io,w
is then shown by diag(2,..;). At any time ¢, the set of admissible pairs of positions for
the RX and TX robotsis asubset of P x P defined as follows:

Ft é{(plap?) S P X P ‘ ||§’i,t _sz S dmax7 1= 1727

dir. antennas can be aligned aong L(p;, p2) }, (5.21)

where d,,. 1S the maximum step size of the robots and £(p;, p») denote the line segment
between p; and p,. Note that due to possible constraints on the rotation of the onboard
antennas of the robots, some of the points may not be feasible and need to be excluded
from the set of admissible points. For any pair of positions (pi, p2) € JF; we then propose

the following ad-hoc and variance-based next position optimization problem:

e Ad-hoc:
(1,641, 62,041) = argmax QﬁoT,u(phm) exXp ( - W2u7t1)7 (5.22)
(p1,p2)EF:
e Variance-based:
(51,t+17 f2,t+1) = arginax ¢3:1L(p17p2)diag<§]o,u,t)a (5.23)
(p1,p2)EF:
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where U 1 denotes the column vector of the column-sum of matrix ¥, ; and
You(p1, p2) denotes the column vector corresponding to the parts of ¢ (py, ps) that are
in Z,,. The intuition behind the ad-hoc strategy is that the new measurement vector
(" (&1,441, €2.441)) should have a small correlation with the existing measurement vec-
tors, i.e. rows of W,. Thiswill increase the probability that the new wireless measurement
(the line segments between the TX and RX robots) hits the cells that are not yet visited.
We have further found that amplifying the impact of the unvisited cells by using the ex-
ponential function can improve the performance. The ad-hoc strategy (5.22) then chooses
the pair whose connecting line segment passes through the cells that have previously been
visited the least. This strategy can be used with both BCS and TV. The variance-based
optimization function of (5.23), on the other hand, is based on the summation of the vari-
ances of the cellsthat the new wireless measurement line hits. Thus, the new measurement
line is chosen such that the cells with high variances (high uncertainty) are selected. As
expected, the variance-based approach can be more informative for adaptation, which is

an advantage of using BCS over TV.

Algorithm 3 summarizes our adaptive strategy for collecting wireless channel mea-

surements.

We next show the performance of our online adaption integrated mapping framework
in asimulation environment. Consider the case where the robots are trying to reconstruct
the obstacle map of Fig. 5.4 based on only noisel ess wirel ess measurements. We will show
the performance of the non-ideal case when we discuss our experimental resultsin the next

section.

Assume that no occupancy grid mapping is performed, i.e. ¥, = ¥, ,, for all t. For
this example, we let P correspond to a set of discrete positions along the square dashed
line that surrounds the map of interest (see Fig. 5.3 (right)). The size of themap is64 x 64
pixels. Thus, we let the admissible positions be evenly distributed along the dashed line
such that card(P) = 256. We aso set 7, = {(pl,pg) € P x 73}.
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Algorithm 3: Adaptive Path Planning for our Integrated Obstacle Mapping
Input: toper, Py Ly, Lo, Lo, Yo, Yo (@ priori wireless channel measurements)

Output: Thetrgjectory of the TX and RX robots as well as an extra set of wireless channel
measurements

for ¢ <~ 0to toper dO

Estimate the o, ,, based on the available wireless channel measurements ¢ and U;

Calculate the admissible set F; using the current positions of the robots;

Calculate (&1,¢41,&2,4+1) using either (5.22) or (5.23). The variance-based strategy of

(5.23) uses the current estimate of covariance matrix, io,w;

Navigate the robots to & ;1 and &2 141;

Collect the new wireless channel measurement and add it to ¢ to form ¢;,1. Also, set

U
Uit =
|:¢T(51,t+17 52,t+1)}

end

At the beginning of the operation, the robots make a very small number of random
wireless measurements, corresponding to 3% of the map. The reconstruction of BCS and
TV minimization using these initial measurements is shown in Fig. 5.11. For BCS, the
same parameters of the example of Fig. 5.7 is used. The robots then proceed to make
additional wireless measurements based on our online adaptive approach, choosing the
next best positions out of F;,. We assume that d,,. is infinite and that any pair of posi-
tions can be selected from F,. Fig. 5.12 shows the quality of adaptive mapping after 15%
measurements are adaptively collected. As can be seen, the mapping quality has improved
considerably. It can furthermore be seen that, while the ad-hoc methods result in an accept-
able reconstruction quality, the variance-based approach outperforms the adhoc strategies
as expected. Figure 5.13 shows the mapping performance curves as a function of the
percentage of the additional wireless measurements. As can be seen, BCS approaches per-
form better than TV and the variance-based approach outperforms the adhoc one. These

results highlight an advantage of mapping based on BCS by using the estimated variances.
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However, due to the same reason, BCS also requires an initial estimation of the underlying

model parameters, which can make it prone to error propagation.

Original BCS (NMSE = 1.65 dB) TV minimization (NMSE = 2.00 dB)

Figure 5.11: Initial reconstruction of the obstacle of Fig. 5.4 based on 3% noiseless simu-
lated wirel ess measurements.

5.7 Experimental Results

So far we have proposed two approaches for integrating occupancy grid mapping (using
laser measurements) with CS mapping (using wireless channel measurements). In this
section, we show the performance of our two approaches in the reconstruction of areal
structure that includes an occluded part. We start by describing the additions we made to
our experimental robotic setup in order to enable our proposed integrated approach.

5.7.1 Summary of the Experimental Setup to Enable our Proposed
| ntegrated Approach

In Chapter 2, we described our experimental setup, which consisted of Pioneer P3-AT
robots equipped with directional narrow-beam antennas and the corresponding servo
mechanisms for antenna rotation. In order to test our proposed integrated approach, we

equipped each robot with a Hokuyo URG laser scanner which has a maximum range of
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Original BCS variance—based (NMSE = —Inf dB)
TV ad-hoc (NMSE = -3.38 dB) BCS ad-hoc (NMSE = —6.84 dB)

Figure 5.12: The reconstruction of the obstacle of Fig. 5.4 after 15% additional adaptive
wireless measurements are collected.

5.6 m and a scanning angle of 240°. Figure 5.14 (left) shows the resulting platform with
the laser scanner and the directional antenna. Figure 5.14 (right) shows the robots making
wireless measurementsin order to see through the walls and reconstruct the obstacleinside
while the onboard laser scanners are used to map the portions of the workspace that can

be directly seen by the laser scanners.

In addition to the software package that we developed in order to collect RSSI mea-
surements between the two robots (see Chapter 2 for the details), we have developed an
additional software package for motion planning and occupancy grid mapping using laser
scanners. This second software package is developed in C++ under Linux and makes use
of the Robot Operating System (ROS) [105] for controlling the Pioneer P3-AT platform
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Figure 5.13: MSE as afunction of the percentage of the additional wireless measurements
for our adaptive path planning strategy, in reconstructing the whole map of Fig. 5.4 (3%
initial random measurements were used)

(using p2os stack), operating the Hokuyo URG laser scanner (using hokuyo node laser
driver) and implementing SLAM (using the gmapping stack). The main application of
this package runs as a ROS node itself and is in charge of controlling the robot, prepro-
cessing the map built by the SLAM algorithm and logging it into alog file in real-time for
postprocessing in MATLAB.

We then implement our integrated framework in MATLAB by using the RSSl data
collected by the robots and the occupancy grid map that is given by the SLAM algorithm

to build the entire map of the structure.
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‘ | WEE| WEE| '| EER

Figure 5.14: (left) A Pioneer P3-AT robot equipped with our servo control mechanism
[fixture, adaptive narrow-beam directional antenna and Hokuyo laser scanner; (right) two
robots using laser scanners and wireless measurements in order to map an obstacle struc-
ture that includes occluded parts.

5.7.2 Experimental Results for Mapping a Structure with Occluded

Parts

We next show the performance and see-through capabilities of our proposed integrated
approach in mapping an obstacle structure that has occluded parts. Figure 5.15 (left) shows
a structure with its horizontal cut shown in the right figure. First, consider the case where
arobot only uses its laser scanner outside of the structure as far as it can get using the
entrance on the lower right side. In order to avoid the laser scanner falsely detecting the
antennaas an obstacle, we set the gmapping algorithm to discard any laser reading beyond
the range —60° to 60° (with respect to the robot frame). Fig. 5.16 (b) shows the resulting
generated map. As can be seen, the existence, position and dimensions of the occluded
parts can not be determined by the laser scanner, as expected. Thus, we let the robots do a
few random wireless measurements along the dashed trgectories of Fig. 5.15 (right) and

apply our proposed integrated approach.® The following parameters are used for the BCS

Note that the robots make wireless measurements when positioned on the dashed line of Fig.
5.15 (right) in our experiment. If one robot transmits from inside the structure (using the entrance
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Casel aup = 7, Oinit.comm = 10.34. Therest of the parameters are the same as in Section
5.5. Aspointed out before, we estimated ¢ by using several existing real maps a priori and
applying Eq. 5.16. We consistently found that BCS is not as sensitive to the initialization
of ginitcen @Nd therefore we have fixed it to asmall value of one. Asfor oyt comm, We have
used a priori wireless measurements with other structures that we have constructed in the
past and estimated wqg by subtracting the impact of the structure to measure samples of
the noise asillustrated in Fig. 5.2. We then calculated the standard deviation of this noise.

Subfigures () and (f) of Fig. 5.16 show the performance of our proposed integrated
approach with BCS and TV minimization respectively. As can be seen, even at the very
low sampling rate of 18% of the unknown part, corresponding to 6% of the overall map,
the occluded wall can be clearly seen. The unknown part refers to the area where the laser
scanner can not see the obstacles as marked in Fig. 5.16 (b). 18% wireless measurements
is then the percentage of the wireless measurements as compared to the total number of
pixels of the unknown part. This percentage tranglates to 6% of the overall map, which
is fairly small. It can be seen that the robots can map the structure with our integrated
approach. Furthermore, it can be observed that random BCS performs better than random
TV as we expected from the simulation results of the previous section. For the sake of
comparison, Fig. 5.16 (c) and (d) show the reconstruction if we only use the collected
wireless measurements (6% wireless measurements), without integration with the laser
scanner data. As can be seen, it is hard to map this structure based on only 6% wireless
measurements that are collected from the dashed line of Fig. 5.15 (right), which motivates
the use of the integrated approach.

We next show the performance of our proposed adaptive exploration strategy of Section
5.6 in an experimental setup. In the previous section we showed through simulations that
an adaptive strategy can improve the wireless-based mapping performance. In addition
to doing SLAM, which yields the reconstruction previously shown in Fig. 5.16 (b), we

on the lower-right corner), better reconstructions can be achieved.
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horizontal
cut

Figure 5.15: (left) The obstacle structure of interest and (right) its horizontal cut. The
paths where the robots can make random wireless measurements are marked with dashed
linesintheright figure.

let the robots take a very small number of random wireless measurements of 2.7% of the
unknown part, along the dashed trajectories of Fig. 5.15 (right). As can be seen in Fig.
5.17, this does not yield a good enough reconstruction quality, with neither the BCS nor
the TV minimization approaches. The variance of thisreconstructionisshownin Fig. 5.18
for theintegrated BCS approach. For the BCS case, we use iyt comm = 10.25 and C =0.1
m. The rest of the parameters are the same as the ones used for Fig. 5.16. Our proposed
variance-based approach then aims at making additional wireless measurements such that
the wireless ray crosses as many cells with high variances as possible. By utilizing our
adaptive strategy, the reconstruction quality is significantly improved, as Fig. 5.19 shows.
Furthermore, we can observe that with the same number of measurements, the variance-
based approach has the best performance (measured by the NMSE), followed by the ad-
hoc based approaches with BCS and TV. Fig. 5.20 showsthe variance of the reconstruction
after utilizing the variance-based strategy, which is considerably smaller than that of Fig.
5.18, as expected. Findly, Fig. 5.21 shows the performance of the adaptive approaches
as a function of the percentage of the additional wireless measurements. It can be seen
that the variance-based approach outperforms the ad-hoc ones after a few steps. In this
adaptive experiment, the new pair of TX/RX positions is selected from an existing pool

of available wireless measurements that were made along the dashed trgjectories of Fig.
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Occupancy grid Wireless-based only Wireless-based only
with laser only with BCS with TV

7

Original

Integrated approach Integrated approach
with BCS with TV

Figure 5.16: (a) Horizontal cut of the obstacle map of Fig. 5.15, (b) occupancy grid map-
ping with laser scanners, reconstruction using wireless measurements with (c¢) BCS and
(d) TV minimization, our proposed integrated framework with (€) BCS and (f) TV mini-
mization. The percentage of wireless measurements is 18% of the unknown part, which
corresponds to 6% of the overall map.

5.15 (right). Both the transmitter and receiver positionsare uniformly distributed along the
dashed lines. For each TX/RX pair awireless measurement is available, while avoiding the
cases where both transmitting and receiving robots are on the same side of the structure.
We assume that d.,.x is infinite. The next position (£; ;+1,&2++1) iS then chosen using
our proposed strategies. Note that random wireless measurements are used for all the

experimental results, as mentioned earlier.

In summary, our experimental results confirmed that the proposed integrated frame-
work can map occluded obstacles based on a small number of wireless measurements and

overcome the deficiencies of both laser-based and wireless-based mapping approaches.

110

www.manaraa.com



Chapter 5. Integrated Wireless and Grid-Based Obstacle Mapping Framework

Furthermore, our adaptive wireless measurement collection can further improve the per-
formance. Finally, both integrated TV and BCS-based approaches provide comparable
reconstruction results, with the BCS-based approach performing better with random mea-
surements and TV-based approach with coordinated measurements. Additionally, the
BCS-based approach can result in a better online adaptation by utilizing the estimated
variance information. However, integrated BCS-based approach requires estimating the
underlying model parameters as compared to the TV-based approach. Thisneedsan initial
estimation of the model parameters, which can be proneto errors. Thus, depending on the
system requirements, the integrated mapping choice that is more suitable can be selected

in practice.

Integrated approach with Integrated approach with
BCS (NMSE = 1.86 dB) TV minimization (NMSE = 1.96 dB)

Original

Figure 5.17: The reconstruction of the obstacle of Fig. 5.15 using laser scanner data and
193 wireless measurements (corresponding to 2.7% of the unknown part or 0.8% of the
overal map). As can be seen, the number of collected wireless measurementsistoo small
to detect the occluded parts.

5.8 Summary

In this chapter we considered the problem of obstacle/object mapping using a team of
mobile robots that are equipped with a laser scanner, a wireless communication device

and a directional antenna. We proposed an integrated framework for mapping with see-

111

www.manaraa.com



Chapter 5. Integrated Wireless and Grid-Based Obstacle Mapping Framework

4000
3000
~5¥ 2000

1000

4

y(m) 0o Xx(m)

Figure 5.18: Variance of the reconstruction of Fig. 5.17 for the integrated BCS-based
Strategy.

through capabilities based on both laser and wireless channel measurements. We specifi-
cally showed how to integrate occupancy grid mapping with two CS-based reconstruction
methods. Bayesian compressive sensing (BCS) and total variation (TV) minimization.
We compared the performance of these two approaches using both smulated and real data
from our robotic platforms. For instance, our results indicated that the integrated BCS-
based method is more appropriate for mapping based on random wireless measurements
while TV-based integrated approach performs better with coordinated wireless measure-
ments. The integrated BCS-based approach furthermore provides an estimate of the vari-
ance, which can be more informative for adaptive path planning and wirel ess measurement
collection. It, however, requires an initial estimation of the underlying model parameters.
We finally proposed an adaptive path planning strategy that utilizes the current estimate of

uncertainty to better guide the robots for wireless measurement collection.
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Figure 5.19: Improvement to the reconstruction of Fig. 5.17 based on an additional 7.03%
(of the unknown part) wireless measurements that are collected using our adaptive strate-
giesof Section 5.6.
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Figure 5.20: Variance of the reconstruction of Fig. 5.19 for the integrated BCS adaptive
variance-based strategy.
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Figure 5.21: MSE versus number of additional wireless measurements for the proposed

adaptive motion planning strategies of Section 5.6. Initial wireless measurements corre-
sponding to 2.7 % of the unknown part or 0.8% of the whole map are used.
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Chapter 6

Conclusion and Future Extensions

In this dissertation, we considered the problem of obstacle/object mapping in robotic net-
works. Our goal was to develop a framework for mapping obstacles, including occluded
ones, by using a small number of wireless measurements. We started by tapping into the
knowledge available in the wireless communication literature in order to provide a com-
prehensive overview of the key underlying dynamics of wireless channels. small-scale
fading, shadowing and the distance-dependent path loss. We confirmed the characteristics
of these dynamics experimentally by making an extensive number of channel measure-
ments with our robotic testbed. In order to automate the channel measurement process, we
developed a robotic testbed and showed how adaptive directional antennas can effectively
reduce the effects of multipath fading on the received signal strength.

We then proceeded with our wireless-based obstacle mapping framework. The frame-
work was based on the fact that the shadowing component of a wireless transmission
contains implicit information on the objects located on the path between the transmitter
and receiver. In order to limit the number of needed measurements we made use of com-
pressive sampling theory. Specifically, we exploited the sparse representation of the map

in space, wavelet and total variationsin order to build it with minimal sensing, and without
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directly sensing alarge percentage of the area. We aso considered different reconstruction

approaches based on Basis Pursuit, Matching Pursuit and Total Variation minimization.

We then showed the underlying tradeoffs of different sampling, sparsity and recon-
struction techniques. For instance, we saw that coordinated space or frequency sampling
with total variation minimization can provide a good reconstruction quality. We estab-
lished that the right way to compare the performance of the random and coordinated sam-
pling patterns is to consider the relationship between the reconstruction quality and the
angular directions where the map is sampled. More specifically, we showed that the to-
tal number of available channel measurements should be distributed over a small number
of angles (bigger than or equal to the number of jump angles of the structure), with a

preference given to the angles of jumps.

Finally, we considered a scenario where each robot is equipped with a laser scanner,
a wireless communication device and a directional antenna. We proposed an integrated
framework for mapping with see-through capabilities that allows the robots to use laser
scanners to map areas that can be directly sensed, and wireless channel measurements to
map the occluded areas. We specifically showed how to integrate occupancy grid map-
ping with two compressive sensing reconstruction methods: Bayesian compressive sens-
ing (BCS) and TV minimization. We compared the performance of these approaches us-
ing smulated and real data from our robotic platforms. For instance, our results indicated
that the integrated BCS-based method is more appropriate when using random wireless
measurements, while the TV-based integrated approach performs better for coordinated
wireless measurements. The integrated BCS-based approach furthermore provides an es-
timate of the variance, which can be more informative for adaptive path planning and
wireless measurement collection. It, however, requires an initial estimation of the un-
derlying model parameters. We then proposed an adaptive path planning framework that
utilizes the current estimate of uncertainty to better guide the robots for further wireless

measurement collection.
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We further validated all our findingswith our experimental robotic testbed. We showed
the performance of our framework in efficiently mapping a number of real obstacles (in-

cluding blocked ones).

There are several possible extensions of this work. For instance, mapping of more
complicated structures would be an immediate extension. Along this line, understanding
the complexity of the map and the related required number of wireless measurementsisan
interesting problem. Aswe indicated in previous chapters, multipath fading can negatively
impact the mapping performance of our proposed framework. For the experimental plat-
form used in this dissertation, we used transceivers operating at 2.4 GHz. Exploring other
frequencies and understanding their tradeoffs for wireless-based mapping is the subject of
our future work. Finaly, improving the modeling of the wireless transmission to include

more propagation phenomenais another line of future work.
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